imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Triple inverting Schmitt trigger Rev. 5 — 9 December 2013

Product data sheet

1. **General description**

The 74HC3G14; 74HCT3G14 is a triple inverter with Schmitt-trigger inputs. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}. Schmitt trigger inputs transform slowly changing input signals into sharply defined jitter-free output signals.

2. Features and benefits

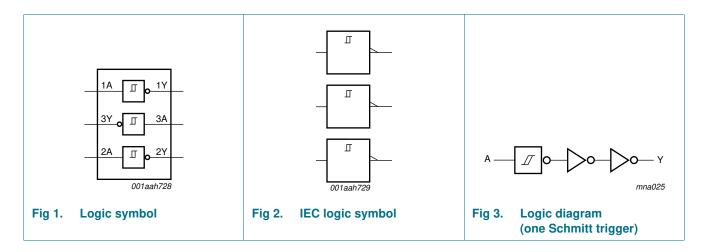
- Wide supply voltage range from 2.0 V to 6.0 V
- Complies with JEDEC standard no. 7A
- Input levels:
 - For 74HC3G14: CMOS level
 - For 74HCT3G14: TTL level
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- Unlimited input rise and fall times
- Multiple package options
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Applications 3.

- Wave and pulse shaper for highly noisy environments
- Astable multivibrators
- Monostable multivibrators

Triple inverting Schmitt trigger

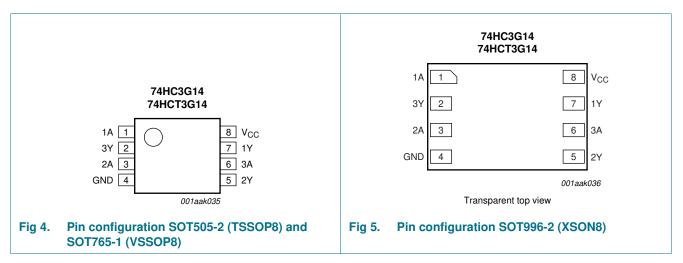
4. Ordering information


Type number	Package					
	Temperature range	Name	Description	Version		
74HC3G14DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads;	SOT505-2		
74HCT3G14DP			body width 3 mm; lead length 0.5 mm			
74HC3G14DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads;	SOT765-*		
74HCT3G14DC			body width 2.3 mm			
74HC3G14GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads;	SOT996-2		
74HCT3G14GD			8 terminals; body $3 \times 2 \times 0.5$ mm			

5. Marking

Table 2. Marking	
Type number	Marking code ^[1]
74HC3G14DP	H14
74HCT3G14DP	T14
74HC3G14DC	H14
74HCT3G14DC	T14
74HC3G14GD	H14
74HCT3G14GD	T14

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


6. Functional diagram

Triple inverting Schmitt trigger

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin des	scription	
Symbol	Pin	Description
1A, 2A, 3A	1, 3, 6	data input
GND	4	ground (0 V)
1Y, 2Y, 3Y	7, 5, 2	data output
V _{CC}	8	supply voltage

8. Functional description

Table 4.Function table^[1]

Input	Output
nA	nY
L	Н
Н	L

[1] H = HIGH voltage level; L = LOW voltage level.

Triple inverting Schmitt trigger

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{CC}$ + 0.5 V	<u>[1]</u> -	±20	mA
I _{OK}	output clamping current	$V_O < -0.5$ V or $V_O > V_{CC}$ + 0.5 V	<u>[1]</u> -	±20	mA
lo	output current	$V_{O}=-0.5$ V to V_{CC} + 0.5 V	<u>[1]</u> -	±25	mA
I _{CC}	supply current		<u>[1]</u> -	+50	mA
I _{GND}	ground current		<u>[1]</u> –50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		[2] _	300	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8 package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	DI Parameter Conditions		74HC3G14			74HCT3G14			Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

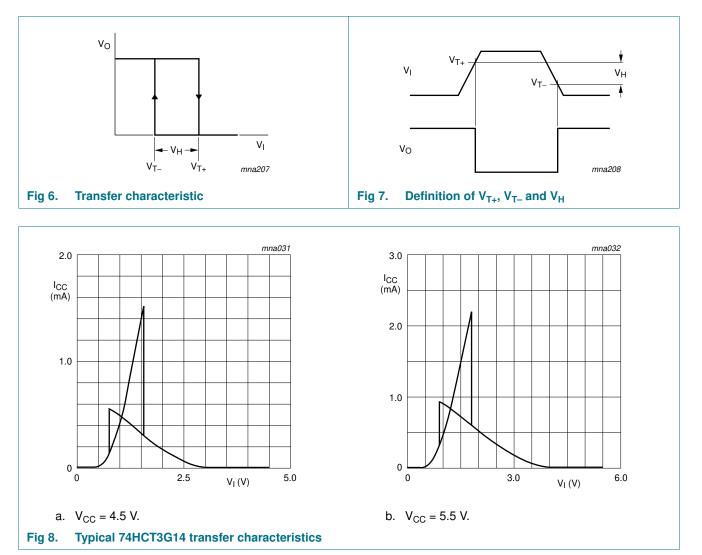
Triple inverting Schmitt trigger

11. Static characteristics

Static characteristics Table 7.

Voltages are referenced to GND (ground = 0 V). All typical values are measured at T_{amb} = 25 °C.

Symbol	Parameter	Conditions		25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC3G	14	1								
V _{OH}	HIGH-level	$V_I = V_{T+} \text{ or } V_{T-}$								
	output voltage	$I_{O} = -20 \ \mu A; V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.18	4.32	-	4.13	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.68	5.81	-	5.63	-	5.2	-	V
V _{OL}	LOW-level	$V_I = V_{T+} \text{ or } V_{T-}$								
	output voltage	$I_{O} = 20 \ \mu A; V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
	$I_{O} = 20 \ \mu A; V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V	
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
lı	input leakage current	$V_I = V_{CC} \text{ or } GND; V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	per input pin; $V_{CC} = 6.0 V$; $V_I = V_{CC}$ or GND; $I_O = 0 A$;	-	-	1.0	-	10	-	20	μA
CI	input capacitance		-	2.0	-	-	-	-	-	pF
74HCT3	G14									
V _{OH}	HIGH-level	$V_I = V_{T+}$ or V_{T-}								
	output voltage	$I_{O} = -20 \ \mu A; V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	4.18	4.32	-	4.13	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
lı	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	per input pin; $V_{CC} = 5.5 V$; $V_I = V_{CC}$ or GND; $I_O = 0 A$;	-	-	1.0	-	10	-	20	μA
Δl _{CC}	additional supply current	per input; $V_{CC} = 4.5 V \text{ to } 5.5 V;$ $V_I = V_{CC} - 2.1 V; I_O = 0 A$	-	-	300	-	375	-	410	μA
Cı	input capacitance		-	2.0	-	-	-	-	-	pF

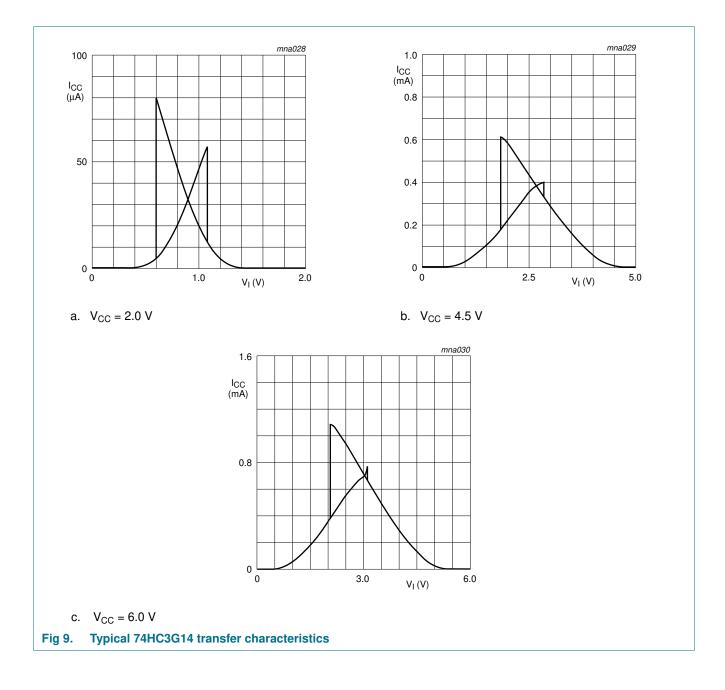

Triple inverting Schmitt trigger

Symbol Parameter Conditions		Conditions		25 °C		-40	0 °C to +1	25 °C	Unit
			Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	
74HC3G	14								
V _{T+}	positive-going	see Figure 6, Figure 7							
	threshold voltage	$V_{CC} = 2.0 V$	1.00	1.18	1.50	1.00	1.50	1.50	V
		$V_{CC} = 4.5 V$	2.30	2.60	3.15	2.30	3.15	3.15	V
		$V_{CC} = 6.0 V$	3.00	3.46	4.20	3.00	4.20	4.20	V
V _{T-}	V _{T-} negative-going	see Figure 6, Figure 7							
threshold voltage	$V_{CC} = 2.0 V$	0.30	0.60	0.90	0.30	0.90	0.90	V	
		$V_{CC} = 4.5 V$	1.13	1.47	2.00	1.13	2.00	2.00	V
		$V_{CC} = 6.0 V$	1.50	2.06	2.60	1.50	2.60	2.60	V
V _H hys	hysteresis voltage	(V _{T+} – V _{T–}); see <u>Figure 6,</u> <u>Figure 7</u> and <u>Figure 9</u>							
		$V_{CC} = 2.0 V$	0.30	0.60	1.00	0.30	1.00	1.00	V
		$V_{CC} = 4.5 V$	0.60	1.13	1.40	0.60	1.40	1.40	V
		$V_{CC} = 6.0 V$	0.80	1.40	1.70	0.80	1.70	1.70	V
74HCT3	G14								
V _{T+}	positive-going	see Figure 6, Figure 7							
	threshold voltage	$V_{CC} = 4.5 V$	1.20	1.58	1.90	1.20	1.90	1.90	V
		$V_{CC} = 5.5 V$	1.40	1.78	2.10	1.40	2.10	2.10	V
V _{T-}	negative-going	see Figure 6, Figure 7							
	threshold voltage	$V_{CC} = 4.5 V$	0.50	0.87	1.20	0.50	1.20	1.20	V
		$V_{CC} = 5.5 V$	0.60	1.11	1.40	0.60	1.40	1.40	V
V _H	hysteresis voltage	(V _{T+} – V _T _); see <u>Figure 6,</u> <u>Figure 7</u> and <u>Figure 8</u>							
		$V_{CC} = 4.5 V$	0.40	0.71	-	0.40	-	-	V
		$V_{CC} = 5.5 V$	0.40	0.67	-	0.40	-	-	V

Table 8.Transfer characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11.

Triple inverting Schmitt trigger



11.1 Waveforms transfer characteristics

NXP Semiconductors

74HC3G14; 74HCT3G14

Triple inverting Schmitt trigger

Triple inverting Schmitt trigger

12. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11.

Symbol	Parameter	Conditions	Conditions		25 °C		-4	0 °C to +1	25 °C	Unit
					Тур	Max	Min	Max (85 °C)	Max (125 °C)	
74HC3G1	4								•	
t _{pd}	propagation delay	nA to nY; see Figure 10	[1]							
		$V_{CC} = 2.0 V$		-	53	125	-	155	190	ns
		$V_{CC} = 4.5 V$		-	16	25	-	31	38	ns
		$V_{\rm CC} = 6.0 \ V$		-	13	21	-	26	32	ns
t _t	transition time	nY; see <u>Figure 10</u>	[2]							
		V _{CC} = 2.0 V		-	20	75	-	95	110	ns
		$V_{CC} = 4.5 V$		-	7	15	-	19	22	ns
		$V_{\rm CC} = 6.0 \ V$		-	5	13	-	16	19	ns
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	[3]	-	10	-	-	-	-	pF
74HCT3G	i 14									
t _{pd}	propagation delay	nA to nY; see <u>Figure 10</u>	[1]							
		$V_{CC} = 4.5 V$		-	21	32	-	40	48	ns
t _t	transition time	nY; see <u>Figure 10</u>	[2]							
		$V_{CC} = 4.5 V$		-	6	15	-	19	22	ns
C _{PD}	power dissipation capacitance	$V_{\rm I}$ = GND to $V_{CC}-1.5~V$	<u>[3]</u>	-	10	-	-	-	-	pF

[1] t_{pd} is the same as t_{PLH} and t_{PHL}

 $\label{eq:ttilde} [2] \quad t_t \text{ is the same as } t_{TLH} \text{ and } t_{THL}$

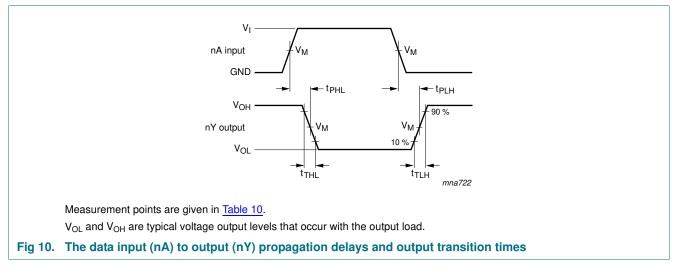
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

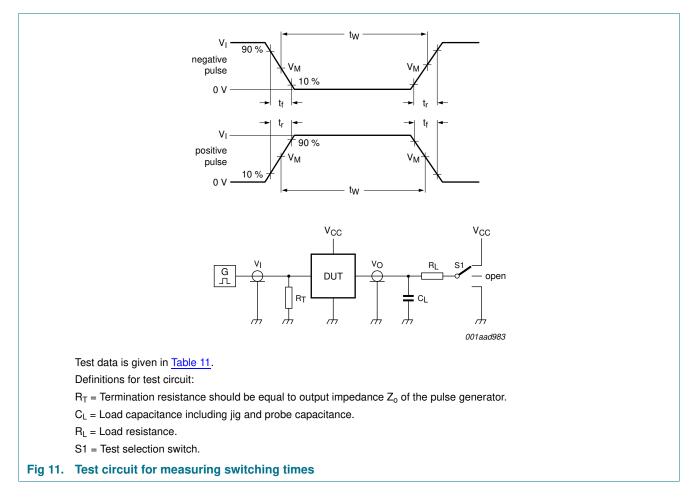

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

Triple inverting Schmitt trigger

13. Waveforms


Table 10. Measurement points

Туре	Input	Output
	V _M	V _M
74HC3G14	0.5V _{CC}	0.5V _{CC}
74HCT3G14	1.3 V	1.3 V

NXP Semiconductors

74HC3G14; 74HCT3G14

Triple inverting Schmitt trigger

Table 11. Test data

Туре	Input		Load	S1 position	
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}
74HC3G14	GND to V _{CC}	≤ 6 ns	50 pF	1 kΩ	open
74HCT3G14	GND to 3.0 V	≤ 6 ns	50 pF	1 kΩ	open

Triple inverting Schmitt trigger

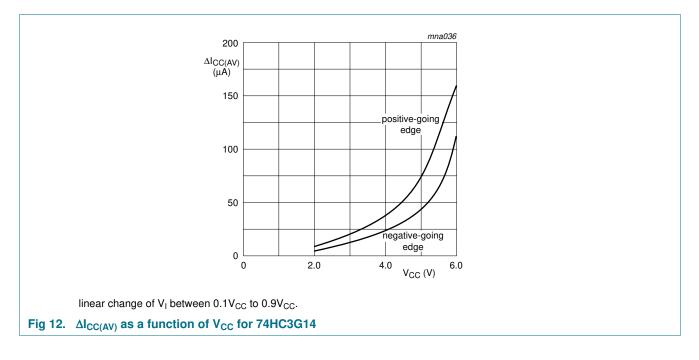
14. Application information

The slow input rise and fall times cause additional power dissipation, which can be calculated using the following formula:

 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC} \text{ where:}$

 P_{add} = additional power dissipation (μ W);

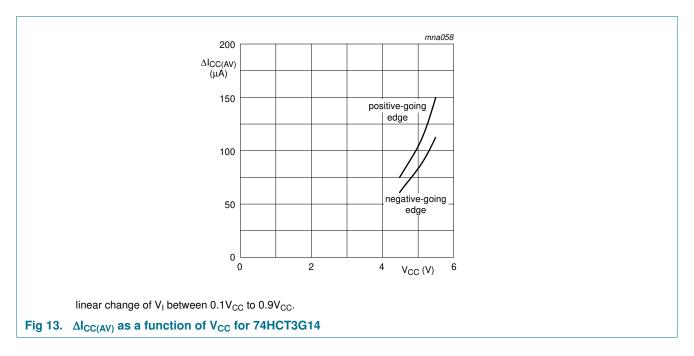
 $f_i = input frequency (MHz);$

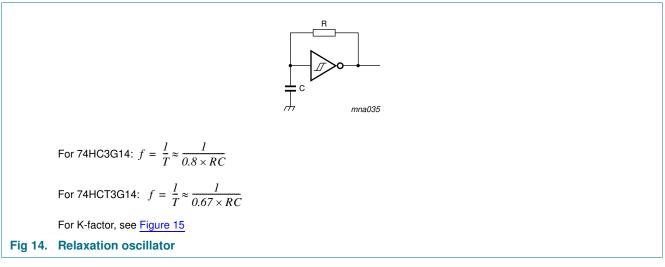

 t_r = input rise time (ns); 10 % to 90 %;

 t_f = input fall time (ns); 90 % to 10 %;

 $\Delta I_{CC(AV)}$ = average additional supply current (µA).

 $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Figure 12 and Figure 13.

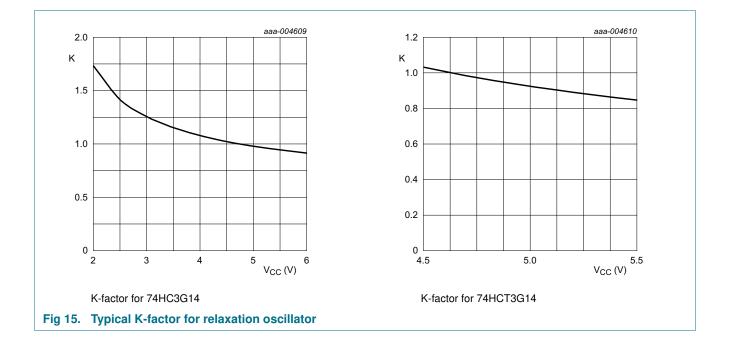

An example of a relaxation circuit using the 74HC3G14/74HCT3G14 is shown in Figure 14.



NXP Semiconductors

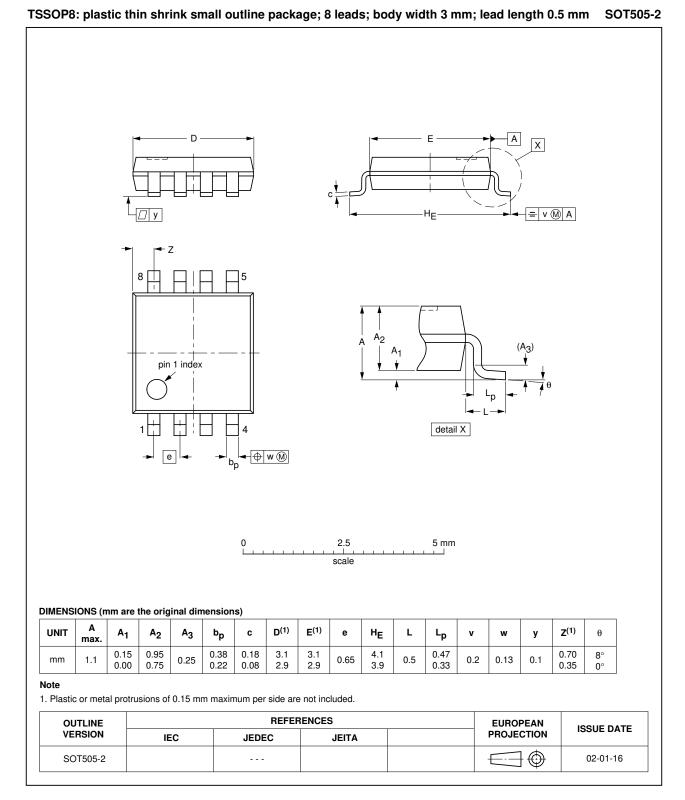
74HC3G14; 74HCT3G14

Triple inverting Schmitt trigger



NXP Semiconductors

74HC3G14; 74HCT3G14


Triple inverting Schmitt trigger

74HC_HCT3G14
Product data sheet

Triple inverting Schmitt trigger

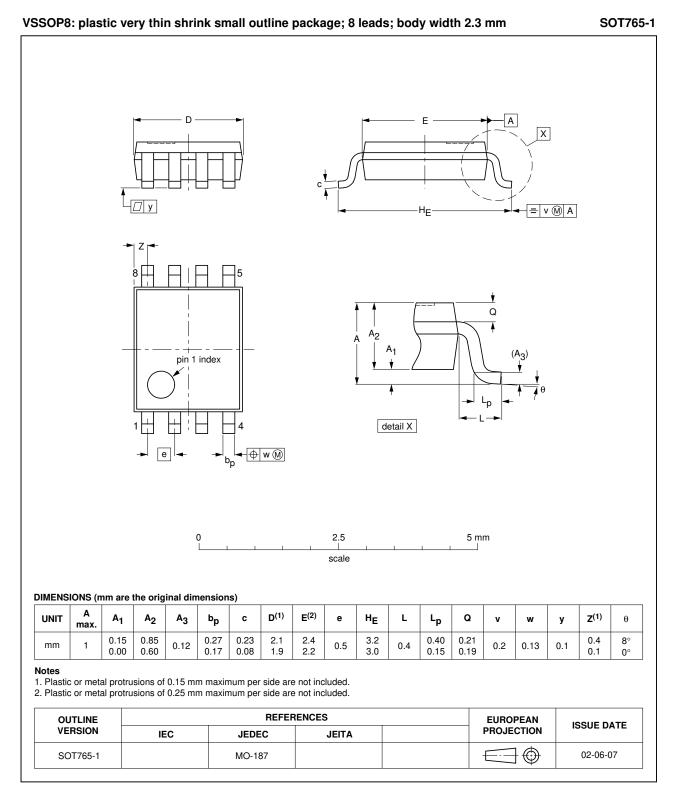

15. Package outline

Fig 16. Package outline SOT505-2 (TSSOP8)

All information provided in this document is subject to legal disclaimers.

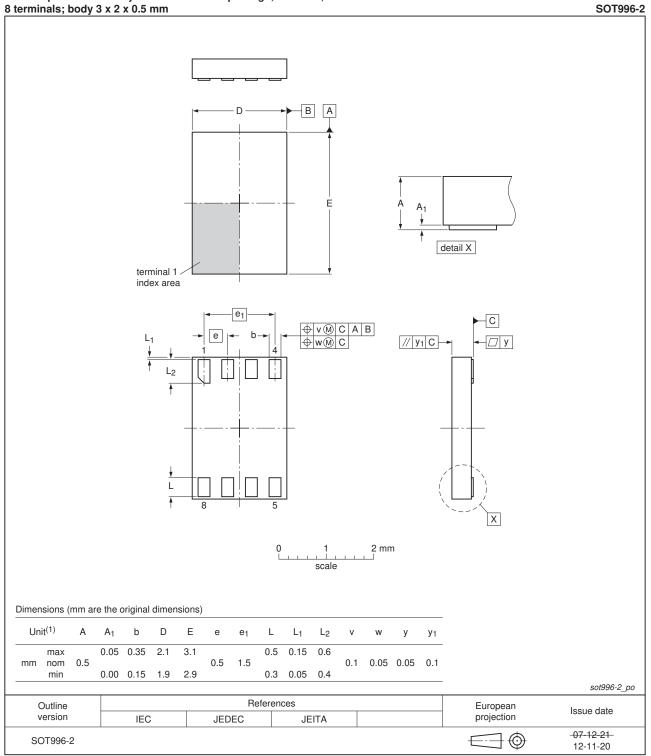

Triple inverting Schmitt trigger

Fig 17. Package outline SOT765-1 (VSSOP8)

All information provided in this document is subject to legal disclaimers.

Triple inverting Schmitt trigger

XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 3 x 2 x 0.5 mm

Fig 18. Package outline SOT996-2 (XSON8)

All information provided in this document is subject to legal disclaimers.

Triple inverting Schmitt trigger

16. Abbreviations

AcronymDescriptionCMOSComplementary Metal Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMMMachine Madel	Table 12. A	Table 12. Abbreviations				
DUTDevice Under TestESDElectroStatic DischargeHBMHuman Body Model	Acronym	Description				
ESD ElectroStatic Discharge HBM Human Body Model	CMOS	Complementary Metal Oxide Semiconductor				
HBM Human Body Model	DUT	Device Under Test				
	ESD	ElectroStatic Discharge				
NANA NA SISTER NA SIST	HBM	Human Body Model				
	MM	Machine Model				

17. Revision history

Table 13. Revision history **Document ID Release date** Data sheet status Change notice Supersedes 74HC HCT3G14 v.5 20131209 Product data sheet 74HC_HCT3G14 v.4 Modifications: • Figure 15 added (typical K-factor for relaxation oscillator). 74HC_HCT3G14 v.4 20131003 Product data sheet 74HC_HCT3G14 v.3 Modifications: For type numbers 74HC3G14GD and 74HCT3G14GD XSON8U has changed to XSON8. 74HC HCT3G14 v.3 20090508 Product data sheet 74HC HCT3G14 v.2 _ 74HC_HCT3G14 v.2 20031104 Product specification 74HC_HCT3G14 v.1 _ 74HC_HCT3G14 v.1 20020723 Product specification _ -

74HC HCT3G14

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© N

74HC HCT3G14

Triple inverting Schmitt trigger

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

20 of 21

Triple inverting Schmitt trigger

20. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 2
5	Marking 2
6	Functional diagram 2
7	Pinning information 3
7.1	Pinning 3
7.2	Pin description 3
8	Functional description 3
9	Limiting values 4
10	Recommended operating conditions 4
11	Static characteristics 5
11.1	Waveforms transfer characteristics 7
12	Dynamic characteristics 9
13	Waveforms 10
14	Application information
15	Package outline 15
16	Abbreviations 18
17	Revision history 18
18	Legal information 19
18.1	Data sheet status 19
18.2	Definitions 19
18.3	Disclaimers
18.4	Trademarks
19	Contact information 20
20	Contents 21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 9 December 2013 Document identifier: 74HC_HCT3G14