

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74HC4016

Quad single-pole single-throw analog switch Rev. 3 — 12 December 2016

Product data sheet

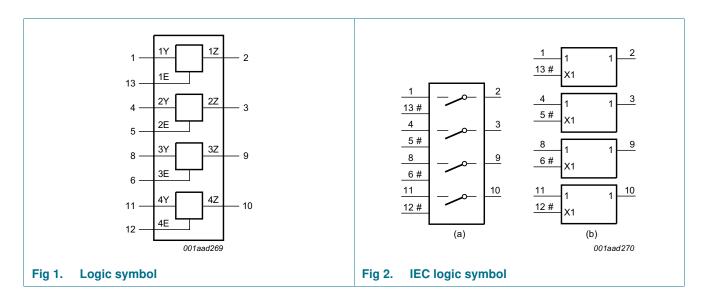
1. **General description**

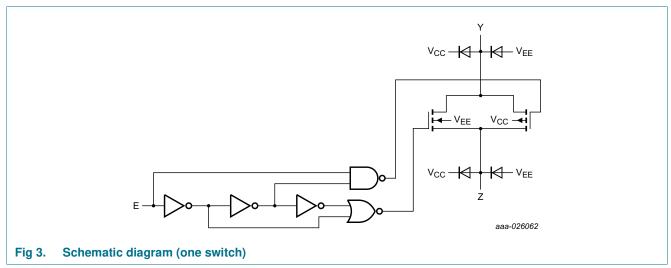
The 74HC4016 is a quad single pole, single throw analog switch. Each switch features two input/output terminals (nY and nZ) and an active HIGH enable input (nE). When nE is LOW, the analog switch is turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

2. Features and benefits

- Input levels nE inputs:
 - ◆ For 74HC4016: CMOS level
- Typical 'break before make' built-in
- Low ON resistance:
 - ♦ 160 Ω (typical) at $V_{CC} = 4.5 \text{ V}$
 - 120 Ω (typical) at V_{CC} = 6.0 V
 - 85 Ω (typical) at $V_{CC} = 9.0 \text{ V}$
- Specified in compliance with JEDEC standard no. 7A
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

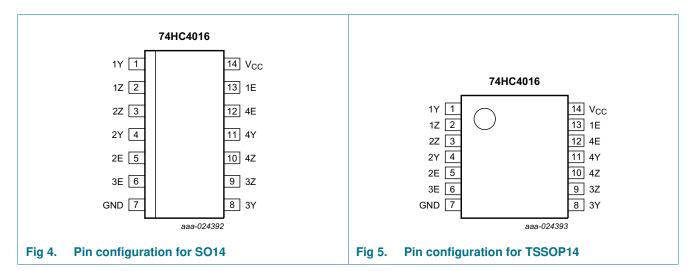
Ordering information 3.


Table 1. **Ordering information**


Type number	Package									
	Temperature range	Name	Description	Version						
74HC4016D	-40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1						
74HC4016PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1						

Quad single-pole single-throw analog switch

4. Functional diagram



Quad single-pole single-throw analog switch

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1Z, 2Z, 3Z, 4Z	2, 3, 9, 10	independent input or output
1Y, 2Y, 3Y, 4Y	1, 4, 8, 11	independent input or output
GND	7	ground (0 V)
1E, 2E, 3E, 4E	13, 5, 6, 12	enable input (active HIGH)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function table[1]

Input nE	Switch
L	OFF
Н	ON

[1] H = HIGH voltage level;

L = LOW voltage level.

Quad single-pole single-throw analog switch

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+11.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$		-	±20	mA
I _{SK}	switch clamping current	$V_{SW} < -0.5 \text{ V or } V_{SW} > V_{CC} + 0.5 \text{ V}$		-	±20	mA
I _{SW}	switch current	$V_{SW} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$	[1]	-	±25	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2]			
		SO14 and TSSOP14 packages		-	500	mW
Р	power dissipation	per switch		-	100	mW

^[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows in terminals nY, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{CC} current will flow out of terminals nY. In this case there is no limit for the voltage drop across the switch, but the voltages at nY and nZ may not exceed V_{CC} or GND.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		2.0	5.0	10.0	V
VI	input voltage		GND	-	V _{CC}	V
V _{SW}	switch voltage		GND	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
Δt/ΔV	input transition rise and fall	V _{CC} = 2.0 V	-	-	625	ns/V
	rate	V _{CC} = 4.5 V	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	ns/V
		V _{CC} = 10.0 V	-	-	35	ns/V

^[2] For SO14 package: P_{tot} derates linearly with 8 mW/K above 70 °C. For TSSOP14 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

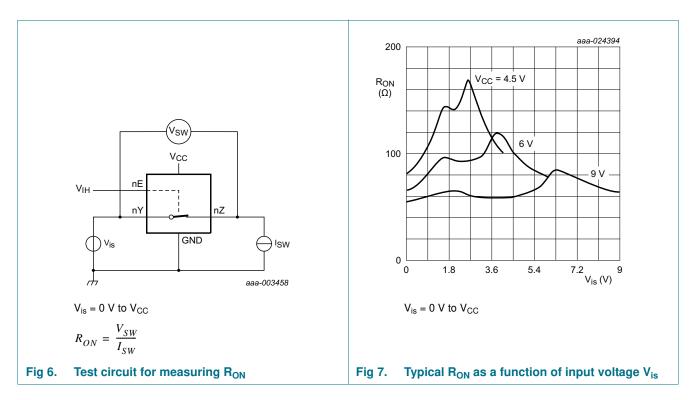
74HC4016 **Nexperia**

Quad single-pole single-throw analog switch

Static characteristics

R_{ON} resistance per switch Table 6.

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see <u>Figure 6</u>.


 V_{is} is the input voltage at a nY or \overline{nZ} terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output. For 74HC4016: V_{CC} – GND = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	+2	+25 °C		-40 °C to +85 °C -40 °C to +125 °C			Unit
			Тур	Max	Min	Max	Min	Max	
R _{ON(peak)}		V _{is} = V _{CC} to GND							
	(peak)	$V_{CC} = 2.0 \text{ V}; I_{SW} = 0.1 \text{ mA}$		-	-	-	-	-	Ω
		V _{CC} = 4.5 V; I _{SW} = 1 mA	160	320	-	400	-	480	Ω
		V _{CC} = 6.0 V; I _{SW} = 1 mA	120	240	-	300	-	360	Ω
		V _{CC} = 9.0 V; I _{SW} = 1 mA	85	170	-	213	-	255	Ω
R _{ON(rail)}	ON resistance	V _{is} = GND							
	(rail)	$V_{CC} = 2.0 \text{ V}; I_{SW} = 0.1 \text{ mA}$	160	-	-	-	-	-	Ω
		V _{CC} = 4.5 V; I _{SW} = 1 mA	80	160	-	200	-	240	Ω
		V _{CC} = 6.0 V; I _{SW} = 1 mA	70	140	-	175	-	210	Ω
		V _{CC} = 9.0 V; I _{SW} = 1 mA	60	120	-	150	-	180	Ω
		$V_{is} = V_{CC}$							
		$V_{CC} = 2.0 \text{ V}; I_{SW} = 0.1 \text{ mA}$	170	-	-	-	-	-	Ω
		V _{CC} = 4.5 V; I _{SW} = 1 mA	90	180	-	225	-	270	Ω
		V _{CC} = 6.0 V; I _{SW} = 1 mA	80	160	-	200	-	240	Ω
		V _{CC} = 9.0 V; I _{SW} = 1 mA	65	135	-	170	-	205	Ω
ΔR_{ON}	ON resistance	$V_{is} = V_{CC}$ to GND							
	mismatch between	V _{CC} = 2.0 V		-	-	-	-	-	Ω
	channels	V _{CC} = 4.5 V	16	-	-	-	-	-	Ω
		V _{CC} = 6.0 V	12	-	-	-	-	-	Ω
		V _{CC} = 9.0 V	9	-	-	-	-	-	Ω

At supply voltages (V_{CC} – GND) approaching 2 V, the analog switch ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

Quad single-pole single-throw analog switch

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

V_{is} is the input voltage at a nY or terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = +25	5 °C			1		
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		$V_{CC} = 4.5 \text{ V}$	3.15	2.4	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	V
		V _{CC} = 9.0 V	6.3	4.3	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	8.0	0.5	V
		$V_{CC} = 4.5 \text{ V}$	-	2.1	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	2.8	1.80	V
		$V_{CC} = 9.0 \text{ V}$	-	4.3	2.70	V
I _I	input leakage current	V _I = V _{CC} or GND				
		V _{CC} = 6.0 V	-	-	±0.1	μΑ
		V _{CC} = 10.0 V	-	-	±0.2	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{see Figure 8}$				
		per channel	-	-	±0.1	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{see } \frac{\text{Figure 9}}{\text{Figure 9}}$	-	-	±0.1	μА

Quad single-pole single-throw analog switch

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

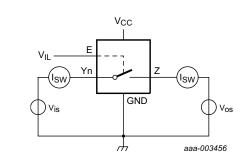
 V_{is} is the input voltage at a nY or terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND				
		V _{CC} = 6.0 V	-	-	2.0	μΑ
		V _{CC} = 10.0 V	-	-	4.0	μΑ
Cı	input capacitance		-	3.5	-	pF
C _{sw}	switch capacitance		-	5	-	pF
T _{amb} = -4	0 °C to +85 °C		,			
V_{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		$V_{CC} = 4.5 \text{ V}$	3.15	-	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	-	-	V
		$V_{CC} = 9.0 \text{ V}$	6.3	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.50	V
		$V_{CC} = 4.5 \text{ V}$	-	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	-	1.80	V
		V _{CC} = 9.0 V	-	-	2.70	V
l _l	input leakage current	V _I = V _{CC} or GND				
		V _{CC} = 6.0 V	-	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Figure 8}}{\text{Figure 8}}$				
		per channel	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Figure 9}}{\text{Figure 9}}$	-	-	±1.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND				
		V _{CC} = 6.0 V	-	-	20.0	μΑ
		V _{CC} = 10.0 V	-	-	40.0	μΑ
$T_{amb} = -4$	0 °C to +125 °C	'			l	
V _{IH}	HIGH-level input voltage	$V_{CC} = 2.0 \text{ V}$	1.5	-	-	V
		$V_{CC} = 4.5 \text{ V}$	3.15	-	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	-	-	V
		$V_{CC} = 9.0 \text{ V}$	6.3	-	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.50	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.80	V
		V _{CC} = 9.0 V	-	-	2.70	V
I _I	input leakage current	$V_{I} = V_{CC}$ or GND				
		V _{CC} = 6.0 V	-	-	±1.0	μА
		V _{CC} = 10.0 V	-	_	±2.0	μA

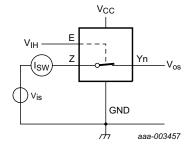
Quad single-pole single-throw analog switch

Table 7. Static characteristics


At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at a nY or terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.


Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Figure 8}}{\text{Model}}$				
		per channel	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - \text{GND}; \text{ see } \frac{\text{Figure 9}}{\text{Figure 9}}$	-	-	±1.0	μА
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $V_{is} = GND$ or V_{CC} ; $V_{os} = V_{CC}$ or GND				
		V _{CC} = 6.0 V	-	-	40	μΑ
		V _{CC} = 10.0 V	-	-	80	μΑ

[1] Typical values are measured at $T_{amb} = 25$ °C.

$$\begin{split} &V_{is} = V_{CC} \text{ and } V_{os} = GND \\ &V_{is} = GND \text{ and } V_{os} = V_{CC} \end{split}$$

Fig 8. Test circuit for measuring OFF-state leakage current

 $V_{is} = V_{CC}$ and $V_{os} = open$ $V_{is} = GND$ and $V_{os} = open$

Fig 9. Test circuit for measuring ON-state leakage current

Quad single-pole single-throw analog switch

10. Dynamic characteristics

Table 8. Dynamic characteristics 74HC4066

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF unless specified otherwise; for test circuit see Figure 12.

V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input.

Vos is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		+25	o°C	-40 °C to	o +85 °C	-40 °C to +125 °C		Unit
				Тур	Max	Min	Max	Min	Max	
t _{pd}	propagation delay	nY to nZ or nZ to nY; $R_L = \infty \Omega$; see <u>Figure 10</u>	[1]							
		V _{CC} = 2.0 V		17	60	-	75	-	90	ns
		V _{CC} = 4.5 V		6	12	-	15	-	18	ns
		V _{CC} = 6.0 V		5	10	-	13	-	15	ns
		V _{CC} = 9.0 V		4	8	-	10	-	12	ns
t _{on}	turn-on time	nE to nY or nZ; see Figure 11	[2]							
		V _{CC} = 2.0 V		52	190	-	240	-	235	ns
		V _{CC} = 4.5 V		19	38	-	48	-	57	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		16	-	-	-	-	-	ns
		V _{CC} = 6.0 V		15	32	-	41	-	48	ns
		V _{CC} = 9.0 V		11	28	-	35	-	42	ns
t _{off}	turn-off time	nE to nY or nZ; see Figure 11	[3]							
		V _{CC} = 2.0 V		47	145	-	180	-	220	ns
		V _{CC} = 4.5 V		17	29	-	36	-	44	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		14	-	-	-	-	-	ns
		V _{CC} = 6.0 V		14	25	-	31	-	38	ns
		V _{CC} = 9.0 V		13	22	-	28	-	33	ns
C _{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC}	[4]	12	-	-	-	-	-	pF

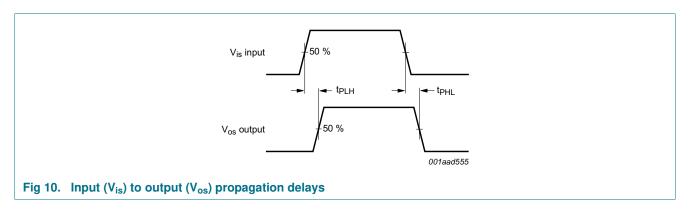
- [1] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [2] t_{on} is the same as t_{PHZ} and t_{PLZ} .
- [3] t_{off} is the same as $t_{\text{PZH}\,\text{and}}\,t_{\text{PZL}}.$
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\}$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 $\sum \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = sum \text{ of outputs};$


C_L = output load capacitance in pF;

 C_{sw} = switch capacitance in pF;

 V_{CC} = supply voltage in V.

Quad single-pole single-throw analog switch

11. Waveforms

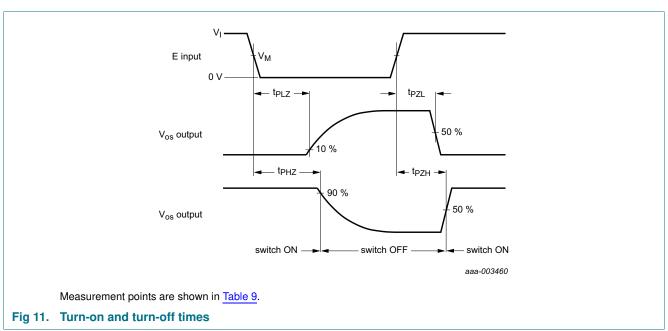
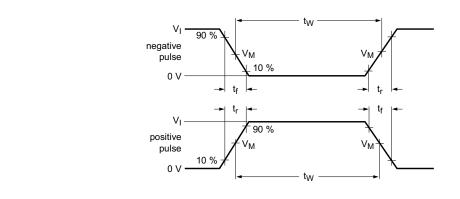
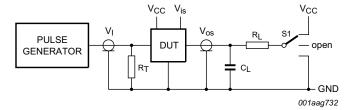




Table 9. Measurement points

V _I	V _M
Vcc	0.5V _{CC}

Quad single-pole single-throw analog switch

Test data is given in Table 10.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

S1 = Test selection switch.

Fig 12. Test circuit for measuring switching times

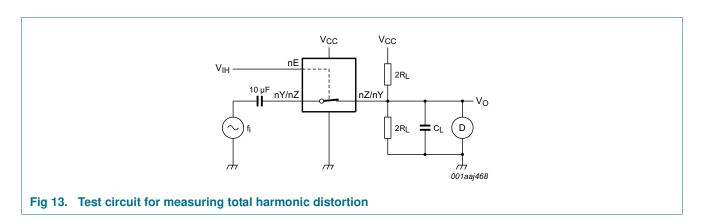
Table 10. Test data

Test	Input			Output	S1 position	
	Control nE	Switch nY (nZ)	t _r , t _f	Switch nZ (nY)		
	VI	V _{is}	-	C _L	R _L	-
t _{PHL} , t _{PLH}	GND	GND to V _{CC}	6 ns	50 pF	-	open
t _{PHZ} , t _{PZH}	GND to V _{CC}	V _{CC}	6 ns	50 pF, 15 pF	1 kΩ	GND
t_{PLZ},t_{PZL}	GND to V _{CC}	GND	6 ns	50 pF, 15 pF	1 kΩ	V _{CC}

Quad single-pole single-throw analog switch

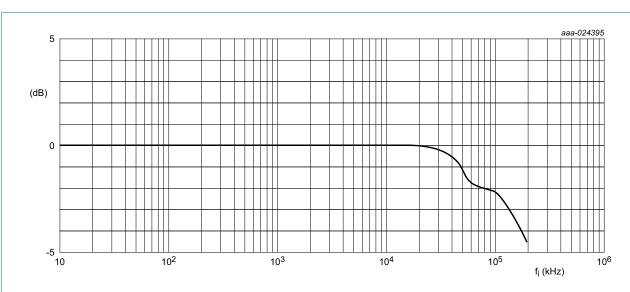
12. Additional dynamic characteristics

Table 11. Additional dynamic characteristics

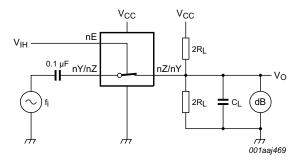

Recommended conditions and typical values; GND = 0 V; T_{amb} = 25 ℃.

 V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	f_i = 1 kHz; R_L = 10 k Ω ; C_L = 50 pF; see Figure 13				%
		V _{CC} = 4.5 V; V _I = 4.0 V (p-p)	-	0.80	-	%
		$V_{CC} = 9.0 \text{ V}; V_I = 8.0 \text{ V (p-p)}$	-	0.40	-	%
		f_i = 10 kHz; R_L = 10 k Ω ; C_L = 50 pF; see Figure 13				
		$V_{CC} = 4.5 \text{ V}; V_I = 4.0 \text{ V (p-p)}$	-	2.4	-	%
		$V_{CC} = 9.0 \text{ V}; V_I = 8.0 \text{ V (p-p)}$	-	1.2	-	%
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; $C_L = 10 pF$; see Figure 14				
		V _{CC} = 4.5 V	-	150	-	MHz
		V _{CC} = 9.0 V	-	160	-	MHz
α_{iso}	isolation (OFF-state)	$R_L = 600 \Omega$; $C_L = 50 pF$; $f_i = 1 MHz$; see Figure 15				
		V _{CC} = 4.5 V	-	-50	-	dB
		V _{CC} = 9.0 V	-	-50	-	dB
V _{ct}	crosstalk voltage	between digital input and switch (peak to peak value); $R_L = 600 \Omega$; $C_L = 50 pF$; $f_i = 1 MHz$; see Figure 16				
		V _{CC} = 4.5 V	-	110	-	mV
		V _{CC} = 9.0 V	-	220	-	mV
Xtalk	crosstalk	between switches; $R_L = 600 \Omega$; $C_L = 50 pF$; [1] $f_i = 1 \text{ MHz}$; see Figure 17				
		V _{CC} = 4.5 V	-	-60	-	dB
		V _{CC} = 9.0 V	-	-60	-	dB

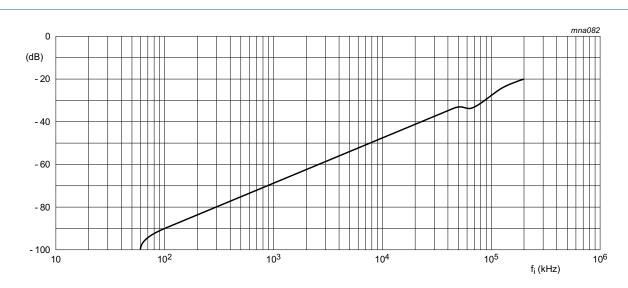
- [1] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- [2] Adjust input voltage V_{is} to 0 dBm level at V_{os} for f_i = 1 MHz (0 dBm = 1 mW into 50 Ω). After set-up, f_i is increased to obtain a reading of -3 dB at V_{os} .



74HC4016

Quad single-pole single-throw analog switch

a. Typical -3 dB frequency response



b. Test circuit

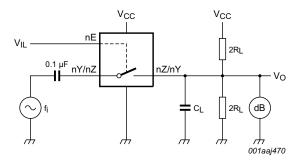
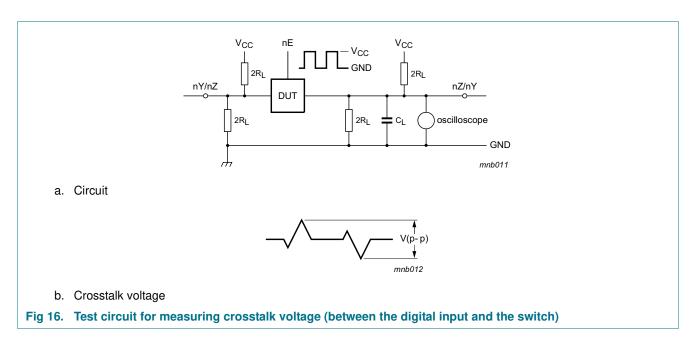
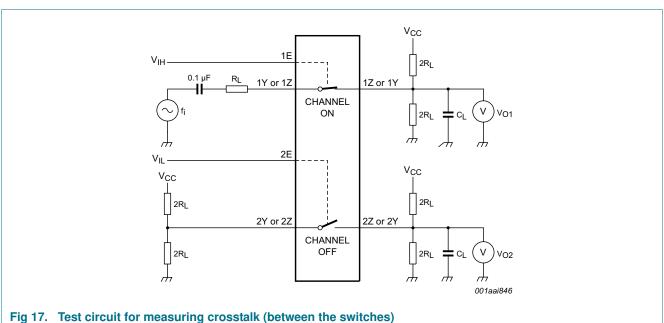

 $\mbox{V}_{\mbox{CC}}$ = 4.5 V; GND = 0 V; $\mbox{R}_{\mbox{L}}$ = 50 $\Omega;$ $\mbox{R}_{\mbox{source}}$ = 1 $\mbox{k}\Omega.$

Fig 14. -3 dB frequency response

Quad single-pole single-throw analog switch

a. Isolation (OFF-state)

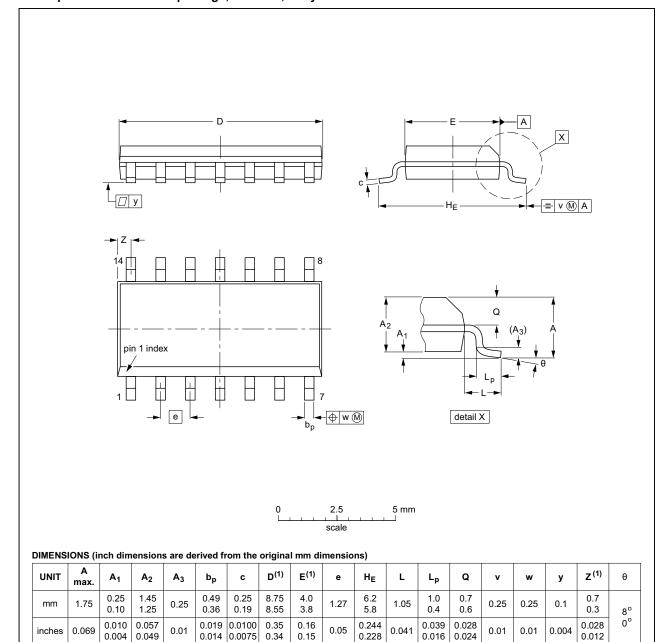



b. Test circuit

 $\mbox{V}_{\mbox{CC}}$ = 4.5 V; GND = 0 V; $\mbox{R}_{\mbox{L}}$ = 600 $\Omega;$ $\mbox{R}_{\mbox{source}}$ = 1 k $\Omega.$

Fig 15. Isolation (OFF-state) as a function of frequency

Quad single-pole single-throw analog switch



Quad single-pole single-throw analog switch

13. Package outline

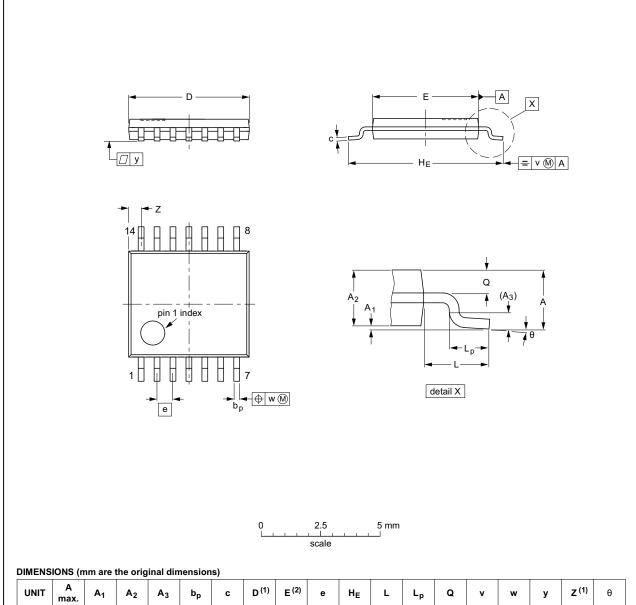
SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DA	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012			99-12-27 03-02-19


Fig 18. Package outline SOT108-1 (SO14)

74HC401

Quad single-pole single-throw analog switch

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

	OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION		IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
	SOT402-1		MO-153			99-12-27 03-02-18
Į					- T	00 02 10

Fig 19. Package outline SOT402-1 (TSSOP14)

74HC4016

Quad single-pole single-throw analog switch

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC4016 v.3	20161212	Product data sheet	-	74HC_HCT4016_CNV v.2
Modifications:	Type numbers	s 74HC4016N, 74HCT4016N a	and 74HCT4016D re	moved.
74HC_HCT4016_CNV v.2	19901201	Product specification	-	-

Quad single-pole single-throw analog switch

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74HC4016

All information provided in this document is subject to legal disclaimers.

Quad single-pole single-throw analog switch

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Quad single-pole single-throw analog switch

18. Contents

1	General description
2	Features and benefits
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description
6	Functional description 3
7	Limiting values 4
8	Recommended operating conditions 4
9	Static characteristics 5
10	Dynamic characteristics
11	Waveforms
12	Additional dynamic characteristics 12
13	Package outline
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions19
16.3	Disclaimers
16.4	Trademarks20
17	Contact information 20
18	Contents 21

[©] Nexperia B.V. 2017. All rights reserved