mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Johnson decade counter with 10 decoded outputs

Rev. 1 — 24 March 2014

Product data sheet

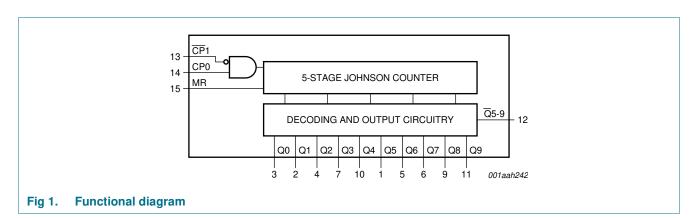
1. General description

The 74HC4017-Q100; 74HCT4017-Q100 is a 5-stage Johnson decade counter with 10 decoded outputs (Q0 to Q9). It has an output from the most significant flip-flop (\overline{Q} 5-9), two clock inputs (CP0 and $\overline{CP1}$) and an overriding asynchronous master reset input (MR). Either a LOW-to-HIGH transition at CP0 while $\overline{CP1}$ is LOW, or a HIGH-to-LOW transition at $\overline{CP1}$ while CP0 is HIGH, advances the counter. The \overline{Q} 5-9 output is LOW while the counter is in states 5, 6, 7, 8 and 9. When cascading counters, it can be used to drive the CP0 input of the next counter. A HIGH on MR resets the counter to zero ($Q0 = \overline{Q}$ 5-9 = HIGH; Q1 to Q9 = LOW) independent of the clock inputs (CP0 and $\overline{CP1}$). An internal circuit: following any illegal code the counter returns to a proper counting mode within 11 clock pulses provides automatic code correction of the counter. Inputs include clamp diodes that enable the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

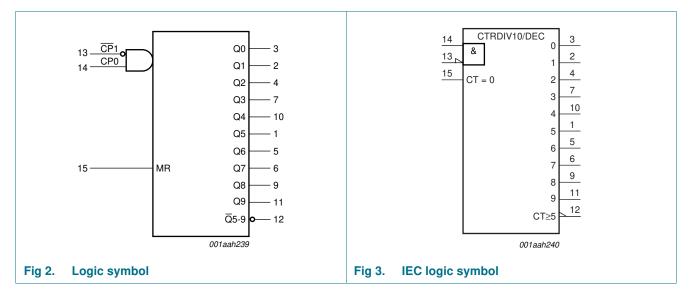
2. Features and benefits

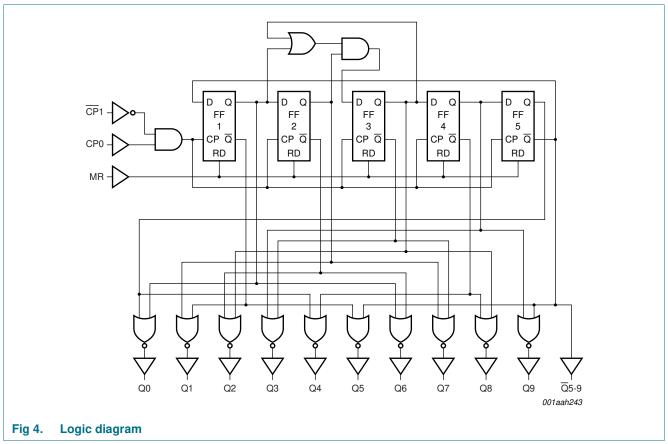
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 2.0 V to 6.0 V
- Input levels:
 - For 74HC4017-Q100: CMOS level
 - For 74HCT4017-Q100: TTL level
- Complies with JEDEC standard no. 7 A
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options


nexperia

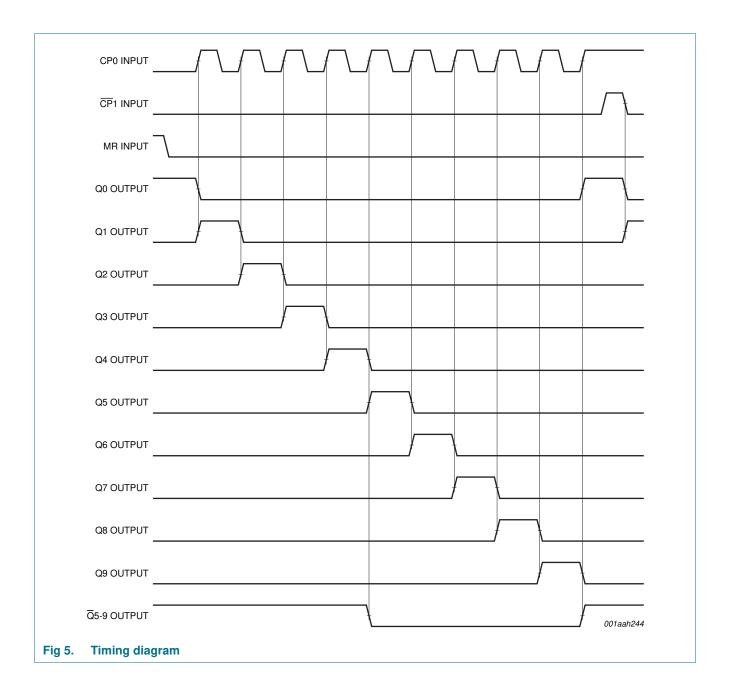
Johnson decade counter with 10 decoded outputs

3. Ordering information


Type number	Package				
	Temperature range	Name	Description	Version	
74HC4017-Q100				-	
74HC4017D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1	
74HC4017PW-Q100	C4017PW-Q100 -40 °C to +125 °C TSSOP16 plastic thin shrink small outline package; 16 leads; body width 4.4 mm			SOT403-1	
74HC4017BQ-Q100	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal-enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	SOT763-1	
74HCT4017-Q100			1	1	
74HCT4017D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1	
74HCT4017BQ-Q100	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal-enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	SOT763-1	


4. Functional diagram

74HC4017-Q100; 74HCT4017-Q100


Johnson decade counter with 10 decoded outputs

74HC4017-Q100; 74HCT4017-Q100

Johnson decade counter with 10 decoded outputs

Johnson decade counter with 10 decoded outputs

Pinning information 5.

74HC4017-Q100 74HCT4017-Q100 20 terminal 1 Q5 74HC4017-Q100 index area 74HCT4017-Q100 -16 Q1 2) (15 MR 16 V_{CC} Q5 1 3) Q0 (14 CP0 Q1 2 15 MR CP1 4) (13 Q2 Q0 3 14 CP0 Q5-9 Q6 5) (12 13 CP1 Q2 4 6) (11 Q9 Q7 GND⁽¹⁾ Q6 5 12 Q5-9 Q3 7) (10 Q4 Q7 6 11 Q9 6 6 Q3 7 10 Q4 GND ő 9 Q8 GND 8 aaa-010574 Transparent top view aaa-010573 (1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND. Pin configuration SO16 and TSSOP16 **Pin configuration DHVQFN16**

5.1 Pinning

5.2 Pin description

Table 2. Pin description								
Symbol	Pin	Description						
Q[0:9]	3, 2, 4, 7, 10, 1, 5, 6, 9, 11	decoded output						
GND	8	ground (0 V)						
Q5-9	12	carry output (active LOW)						
CP1	13	clock input (HIGH-to-LOW edge-triggered)						
CP0	14	clock input (LOW-to-HIGH edge-triggered)						
MR	15	master reset input (active HIGH)						
V _{CC}	16	supply voltage						

Fig 7.

Fig 6.

74HC4017-Q100; 74HCT4017-Q100

Johnson decade counter with 10 decoded outputs

Functional description 6.

MR	CP0	CP1	Operation
Η	X	Х	$Q0 = \overline{Q}5-9 = HIGH;$ Q1 to Q9 = LOW
L	Н	\downarrow	counter advances
<u> </u>	1	L	counter advances
L	L	X	no change
_	X	Н	no change
-	Н	\uparrow	no change
_	\downarrow	L	no change

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

 \uparrow = LOW-to-HIGH transition;

 \downarrow = HIGH-to-LOW transition;

7. **Limiting values**

Table 4. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC}$ + 0.5 V	<u>[1]</u>	-	±20	mA
I _{ОК}	output clamping current	$V_O < -0.5$ V or $V_O > V_{CC}$ + 0.5 V	<u>[1]</u>	-	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$		-	±25	mA
I _{CC}	supply current			-	50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$				
	SO16 package		[2]	-	500	mW
	TSSOP16 package		[3]	-	500	mW
	DHVQFN16 package		[4]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] P_{tot} derates linearly with 8 mW/K above 70 $^\circ C.$

- P_{tot} derates linearly with 5.5 mW/K above 60 $^\circ\text{C}.$ [3]
- [4] Ptot derates linearly with 4.5 mW/K above 60 °C.

Johnson decade counter with 10 decoded outputs

8. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74HC4017-	Q100	I		I		
V _{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
$\Delta t/\Delta V$ input transition r	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	ns/V
		V _{CC} = 4.5 V	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	ns/V
T _{amb}	ambient temperature		-40	-	+125	°C
74HCT4017	7-Q100					
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
$\Delta t / \Delta V$	input transition rise and fall rate	V _{CC} = 4.5 V	-	1.67	139	ns/V
T _{amb}	ambient temperature		-40	-	+125	°C

Table 5. Recommended operating conditions

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C te	o +85 °C	–40 °C to	o +125 ℃	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC40	17-Q100									
V _{IH}	VIH HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL} LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V	
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = -20 \ \mu A; V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V

Product data sheet

Johnson decade counter with 10 decoded outputs

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Мах	
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current		-	-	8.0	-	80	-	160	μA
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT4	017-Q100	1								
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}		$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -4 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		l _O = 4.0 mA	-	0.15	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \\ V_{CC} = 5.5 \; V; \; I_{O} = 0 \; A \end{array}$	-	-	8.0	-	80	-	160	μA
∆I _{CC} additional supply current		per input pin; $V_I = V_{CC} - 2.1 V$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 V$ to 5.5 V; $I_O = 0 A$								
		CP0 input	-	25	90	-	113	-	123	μA
		CP1 input	-	40	144	-	180	-	196	μA
		MR input	-	50	180	-	225	-	245	μA
CI	input capacitance		-	3.5	-	-	-	-	-	pF

Johnson decade counter with 10 decoded outputs

10. Dynamic characteristics

Table 7. Dynamic characteristics

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF; see <u>Figure 11</u>.$

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC40	17-Q100									_
t _{pd}	propagation delay	CP0 to Qn; CP0 to $\overline{Q}5-9$; [1] see Figure 10								
		$V_{CC} = 2.0 V$	-	63	230	-	290	-	345	ns
		V _{CC} = 4.5 V	-	23	46	-	58	-	69	ns
		$V_{CC} = 5.0 V;$ $C_{L} = 15 pF$	-	20	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	18	39	-	49	-	59	ns
		CP1 to Qn; CP1 to Q5-9; see Figure 10								
		V _{CC} = 2.0 V	-	61	250	-	315	-	375	ns
		$V_{CC} = 4.5 V$	-	22	50	-	63	-	75	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	20	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	18	43	-	54	-	64	ns
t _{PHL} HIGH to LOW propagation	MR to Q[1:9]; see Figure 10									
	delay	V _{CC} = 2.0 V	-	52	230	-	290	-	345	ns
		$V_{CC} = 4.5 V$	-	19	46	-	58	-	69	ns
		$V_{CC} = 6.0 V$	-	15	39	-	49	-	59	ns
t _{PLH}	LOW to HIGH propagation	MR to \overline{Q} 5-9, Q0; see Figure 10								
	delay	V _{CC} = 2.0 V	-	55	230	-	290	-	345	ns
		$V_{CC} = 4.5 V$	-	20	46	-	58	-	69	ns
		V _{CC} = 6.0 V	-	16	39	-	49	-	59	ns
tt	transition time	see Figure 10 [2]								
		V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		$V_{\rm CC} = 6.0 \ {\rm V}$	-	6	13	-	16	-	19	ns
tw	pulse width	CP0 and CP1 (HIGH or LOW); see Figure 9								
		V _{CC} = 2.0 V	80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	6	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	5	-	17	-	20	-	ns
		MR (HIGH); see Figure 9								
		V _{CC} = 2.0 V	80	19	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	7	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	6	-	17	-	20	-	ns

Product data sheet

Johnson decade counter with 10 decoded outputs

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
su	set-up time	CP1 to CP0; CP0 to CP1; see Figure 8								
		V _{CC} = 2.0 V	50	-8	-	65	-	75	-	ns
		V _{CC} = 4.5 V	10	-3	-	13	-	15	-	ns
		V _{CC} = 6.0 V	9	-2	-	11	-	13	-	ns
h	hold time	CP1 to CP0; CP0 to CP1; see Figure 8								
		V _{CC} = 2.0 V	50	17	-	65	-	75	-	ns
		V _{CC} = 4.5 V	10	6	-	13	-	15	-	ns
		V _{CC} = 6.0 V	9	5	-	11	-	13	-	ns
rec	recovery time	MR to <u>CP</u> 0 and MR to <u>CP</u> 1; see <u>Figure 9</u>								
		V _{CC} = 2.0 V	5	-17	-	5	-	5	-	ns
		$V_{CC} = 4.5 V$	5	-6	-	5	-	5	-	ns
	V _{CC} = 6.0 V	5	-5	-	5	-	5	-	ns	
max	maximum	CP0 or CP1; see Figure 9								
	frequency	V _{CC} = 2.0 V	6.0	23	-	4.8	-	4.0	-	MHz
		$V_{CC} = 4.5 V$	30	70	-	24	-	20	-	MHz
		$V_{CC} = 5.0 V;$ $C_L = 15 pF$	-	77	-	-	-	-	-	MHz
		$V_{\rm CC} = 6.0 \ V$	25	83	-	28	-	24	-	MHz
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC}; \qquad [3]$ $V_{CC} = 5 \text{ V}; f_{i} = 1 \text{ MHz}$	-	35	-	-	-	-	-	pF
74HCT4	017-Q100					1	1			_
pd	propagation delay	CP0 to Qn; CP0 to $\overline{Q}5-9$; [1] see Figure 10								
		$V_{CC} = 4.5 V$	-	25	46	-	58	-	69	ns
		$V_{CC} = 5.0 V;$ $C_L = 15 pF$	-	21	-	-	-	-	-	ns
		CP1 to Qn; CP1 to Q5-9; see Figure 10								
		V _{CC} = 4.5 V	-	25	50	-	63	-	75	ns
	$V_{CC} = 5.0 V;$ $C_L = 15 pF$	-	21	-	-	-	-	-	ns	
PHL	HIGH to LOW propagation	MR to Q[1:9]; see Figure 10								
	delay	V _{CC} = 4.5 V	-	22	46	-	58	-	69	ns
^İ PLH	LOW to HIGH propagation	MR to \overline{Q} 5-9, Q0; see Figure 10								
	delay	V _{CC} = 4.5 V	-	20	46	-	58	-	69	ns

Table 7. Dynamic characteristics ... continued GND = 0 V; $t_r = t_f = 6 ns$; $C_1 = 50 pF$; see Figure 11

Johnson decade counter with 10 decoded outputs

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C te	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	-
t _t	transition time	see Figure 10 [2]								
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
tw	pulse width	CP0 and CP1 (HIGH or LOW); see Figure 9								
		V _{CC} = 4.5 V	16	7	-	20	-	24	-	ns
	MR (HIGH); see Figure 9									
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
t _{su}	set-up time	CP1 to CP0; CP0 to CP1; see Figure 8								-
		$V_{CC} = 4.5 V$	10	-3	-	13	-	15	-	ns
t _h	hold time	CP1 to CP0; CP0 to CP1; see Figure 8								_
		V _{CC} = 4.5 V	10	6	-	13	-	15	-	ns
t _{rec}	recovery time	MR to <u>CP</u> 0 and MR to CP1; see <u>Figure 9</u>								_
		V _{CC} = 4.5 V	5	-5	-	5	-	5	-	ns
f _{max}	maximum	CP0 or CP1; see Figure 9								
	frequency	V _{CC} = 4.5 V	30	61	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF	-	67	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	$\label{eq:VI} \begin{array}{ll} V_{I}=GND \text{ to } V_{CC}-1.5 \text{ V}; & \fbox{I} \\ V_{CC}=5 \text{ V}; f_{i}=1 \text{ MHz} \end{array}$	-	36	-	-	-	-	-	pF

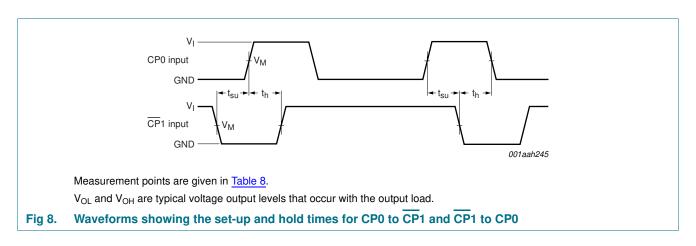
Table 7.Dynamic characteristics ... continuedGND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF; see Figure 11.

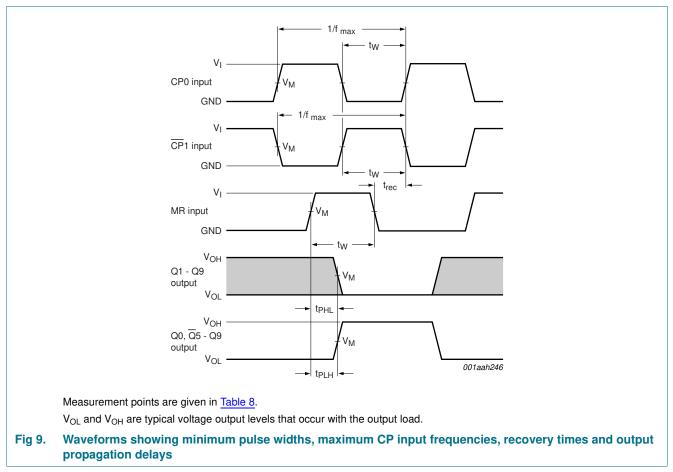
[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] t_t is the same as t_{THL} and t_{TLH} .

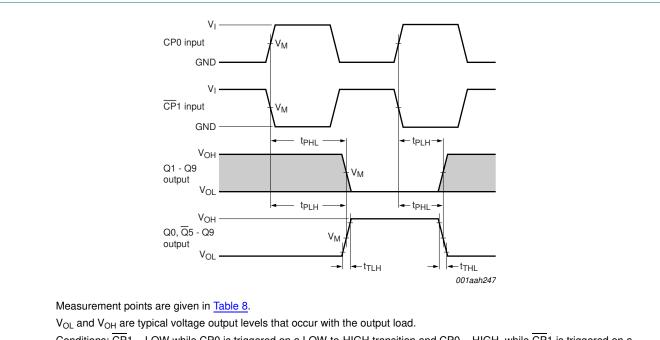
 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;


N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.

74HC4017-Q100; 74HCT4017-Q100


Johnson decade counter with 10 decoded outputs

11. Waveforms

Johnson decade counter with 10 decoded outputs

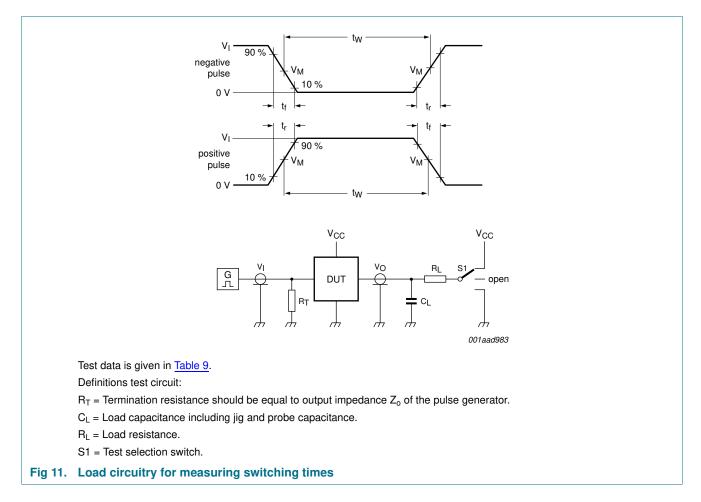

Conditions: $\overline{CP1}$ = LOW while CP0 is triggered on a LOW-to-HIGH transition and CP0 = HIGH, while $\overline{CP1}$ is triggered on a HIGH-to-LOW transition.

Fig 10. Waveforms showing propagation delays for CP to Qn outputs and output transition times

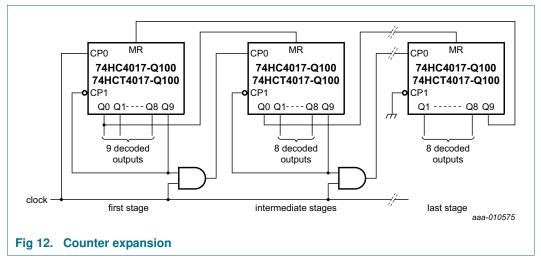
Table 8.Measurement points

Туре	Input	Output	
	V _M	V _M	
74HC4017-Q100	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	
74HCT4017-Q100	1.3 V	1.3 V	

Johnson decade counter with 10 decoded outputs

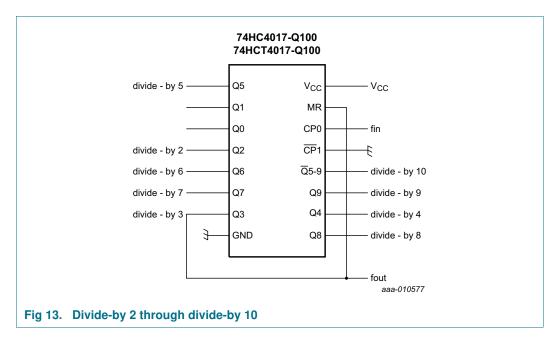
Table	9.	Test	data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74HC4017-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74HCT4017-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}


12. Application information

Some examples of applications for the 74HC4017-Q100; 74HCT4017-Q100 are:

- · Decade counter with decimal decoding
- 1 out of n decoding counter (when cascaded)
- Sequential controller
- Timer


Figure 12 shows a technique for extending the number of decoded output states for the 74HC4017-Q100; 74HCT4017-Q100. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

Johnson decade counter with 10 decoded outputs

Remark: Do not enable the counter on $\overline{CP1}$ when CP0 is HIGH, or on CP0 when $\overline{CP1}$ is LOW. It causes an extra count.

Figure 13 shows an example of a divide-by 2 through divide-by 10 circuit using one 74HC4017-Q100; 74HCT4017-Q100. Since the 74HC4017-Q100; 74HCT4017-Q100 has an asynchronous reset, the output pulse widths are narrow (minimum expected pulse width is 6 ns). The output pulse widths can be enlarged by inserting an RC network at the MR input.

74HC4017-Q100; 74HCT4017-Q100

Johnson decade counter with 10 decoded outputs

13. Package outline

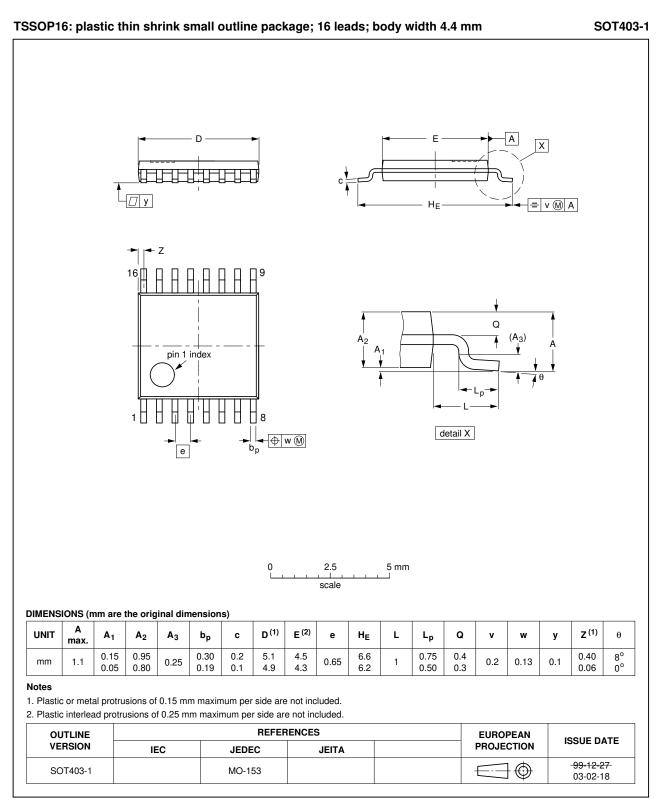


Fig 14. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

74HC HCT4017 Q100

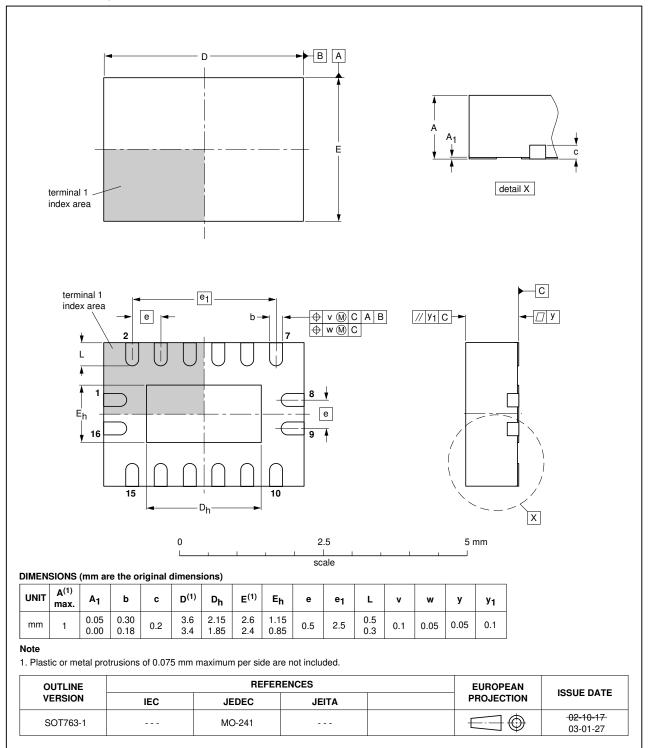

Johnson decade counter with 10 decoded outputs

Fig 15. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

Johnson decade counter with 10 decoded outputs

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 16. Package outline SOT763-1 (DHVQFN16)

All information provided in this document is subject to legal disclaimers.

Johnson decade counter with 10 decoded outputs

14. Abbreviations

Table 10. Abbreviations					
Acronym	Description				
CMOS	Complementary Metal Oxide Semiconductor				
DUT	Device Under Test				
ESD	ElectroStatic Discharge				
НВМ	Human Body Model				
MM	Machine Model				
MIL	Military				
TTL	Transistor-Transistor Logic				

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4017_Q100 v.1	20140324	Product data sheet	-	-

Johnson decade counter with 10 decoded outputs

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

```
74HC_HCT4017_Q100
```

Johnson decade counter with 10 decoded outputs

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74HC4017-Q100; 74HCT4017-Q100

Johnson decade counter with 10 decoded outputs

18. Contents

• • • • • •	1 2 5 5 5
• • • •	2 5 5
•••	5 5 5
 	5 5
 	5
	6
	6
	7
	7
	9
	12
	14
	16
	19
	19
	20
	20
	20
	20
	21
	21
•	22
	•