imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Dual 4-channel analog multiplexer/demultiplexerRev. 2 — 22 November 2012Pro

Product data sheet

General description 1.

The 74HC4052-Q100; 74HCT4052-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). The device is specified in compliance with JEDEC standard no. 7A.

The 74HC4052-Q100; 74HCT4052-Q100 is a dual 4-channel analog multiplexer/demultiplexer with common select logic. Each multiplexer has four independent inputs/outputs (pins nY0 to nY3) and a common input/output (pin nZ). The common channel select logics include two digital select inputs (pins S0 and S1) and an active LOW enable input (pin \overline{E}). When pin \overline{E} = LOW, one of the four switches is selected (low-impedance ON-state) with pins S0 and S1. When pin E = HIGH, all switches are in the high-impedance OFF-state, independent of pins S0 and S1.

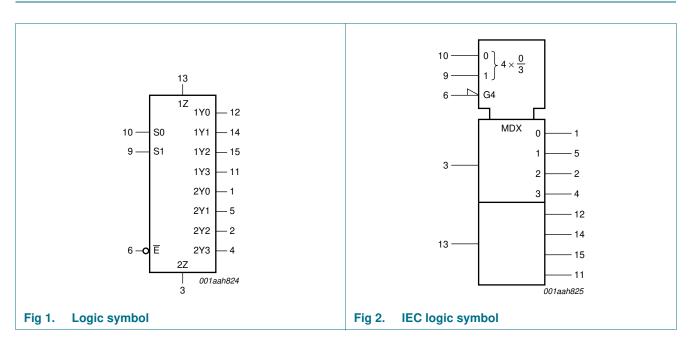
 V_{CC} and GND are the supply voltage pins for the digital control inputs (pins S0, S1 and \overline{E}). The V_{CC} to GND ranges are 2.0 V to 10.0 V for the 74HC4052-Q100, and 4.5 V to 5.5 V for the 74HCT4052-Q100. The analog inputs/outputs (pins nY0 to nY3 and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

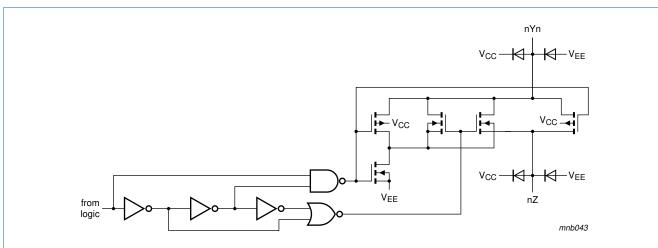
2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1) Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Wide analog input voltage range from -5 V to +5 V
- Low ON resistance:
 - 80 Ω (typical) at V_{CC} V_{EE} = 4.5 V
 - 70 Ω (typical) at V_{CC} V_{EE} = 6.0 V
 - 60 Ω (typical) at V_{CC} V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ±5 V analog signals
- Typical 'break before make' built-in
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
 - CDM AEC-Q100-011 revision B exceeds 1000 V
- Multiple package options

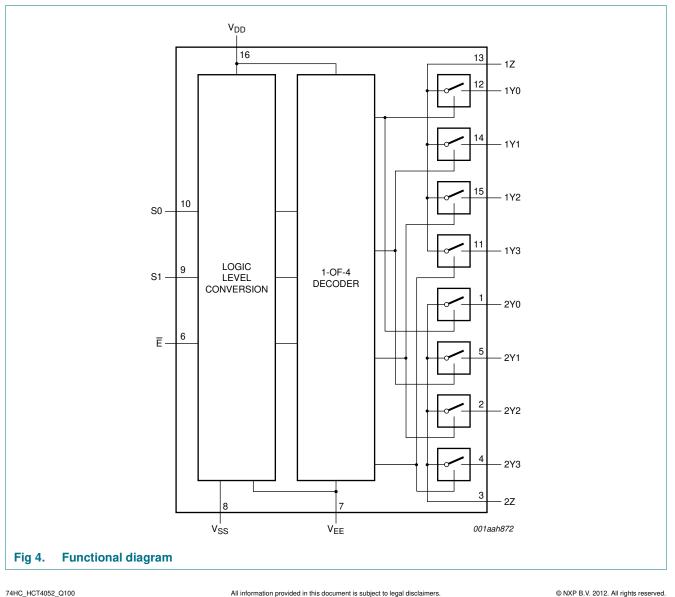
Dual 4-channel analog multiplexer/demultiplexer


3. Applications

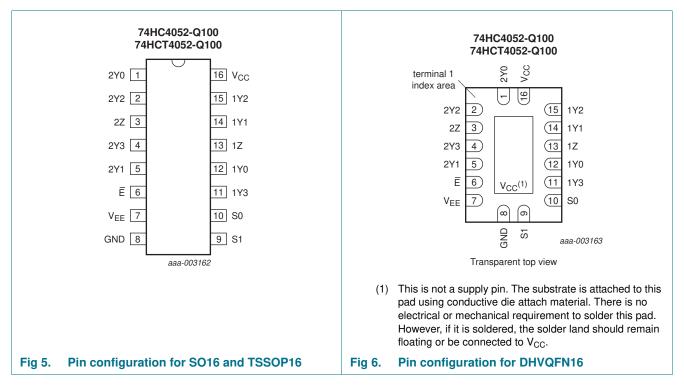
- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating


4. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74HC4052D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body	SOT109-1					
74HCT4052D-Q100			width 3.9 mm						
74HC4052PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads;	SOT403-1					
74HCT4052PW-Q100			body width 4.4 mm						
74HC4052BQ-Q100	–40 °C to +125 °C	DHVQFN16	plastic dual-in line compatible thermal enhanced	SOT763-1					
74HCT4052BQ-Q100			very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85~\text{mm}$						


5. Functional diagram

Dual 4-channel analog multiplexer/demultiplexer


Fig 3. Schematic diagram (one switch)

Dual 4-channel analog multiplexer/demultiplexer

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin descr	iption	
Symbol	Pin	Description
2Y0, 2Y1, 2Y2, 2Y3	1, 5, 2, 4	independent input or output
1Z, 2Z	13, 3	common input or output
Ē	6	enable input (active LOW)
V _{EE}	7	negative supply voltage
GND	8	ground (0 V)
S0, S1	10, 9	select logic input
1Y0, 1Y1, 1Y2, 1Y3	12, 14, 15, 11	independent input or output
V _{CC}	16	positive supply voltage

Dual 4-channel analog multiplexer/demultiplexer

7. Functional description

7.1 Function table

Table 3.	Function table ^[1]			
Input	Input		Channel on	
E	S1	S0		
L	L	L	nY0 and nZ	
L	L	Н	nY1 and nZ	
L	Н	L	nY2 and nZ	
L	Н	Н	nY3 and nZ	
Н	Х	Х	none	

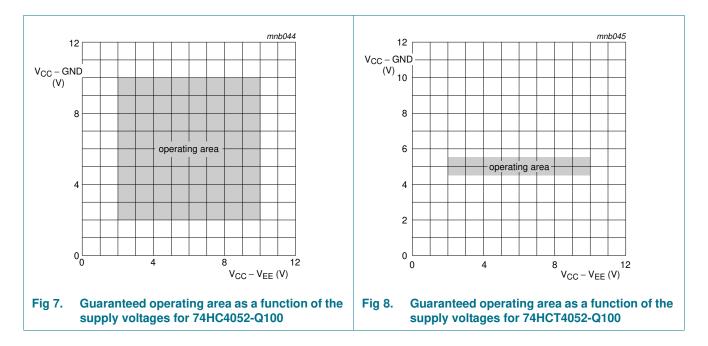
[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{EE} = GND$ (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		<u>[1]</u> –0.5	+11.0	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC}$ + 0.5 V	-	±20	mA
I _{SK}	switch clamping current	V_{SW} < –0.5 V or V_{SW} > V_{CC} + 0.5 V	-	±20	mA
I _{SW}	switch current	$-0.5 \text{ V} < \text{V}_{SW} < \text{V}_{CC} + 0.5 \text{ V}$	-	±25	mA
I _{EE}	supply current		-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-	-50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		[2] _	500	mW
Р	power dissipation	per switch	-	100	mW


[1] To avoid drawing V_{CC} current out of pins nZ, when switch current flows in pins nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into pins nZ, no V_{CC} current flows out of pins nYn. In this case there is no limit for the voltage drop across the switch, but the voltages at pins nYn and nZ may not exceed V_{CC} or V_{EE}.

[2] For SO16 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For TSSOP16 package: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K. For DHVQFN16 package: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

Dual 4-channel analog multiplexer/demultiplexer

9. Recommended operating conditions

Table 5.	Recommended operating co	nditions							
Symbol	Parameter	Conditions	74H	IC4052-0	Q100	74H0	CT4052-	Q100	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage	see <u>Figure 7</u> and <u>Figure 8</u>							
		$V_{CC} - GND$	2.0	5.0	10.0	4.5	5.0	5.5	V
		$V_{CC} - V_{EE}$	2.0	5.0	10.0	2.0	5.0	10.0	V
VI	input voltage		GND	-	V_{CC}	GND	-	V_{CC}	V
V _{SW}	switch voltage		V_EE	-	V_{CC}	V_{EE}	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
	rate	$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V
		$V_{CC} = 10.0 V$	-	-	31	-	-	-	ns/V

Dual 4-channel analog multiplexer/demultiplexer

10. Static characteristics

Table 6. R_{ON} resistance per switch for 74HC405-Q100 and 74HCT4052-Q100

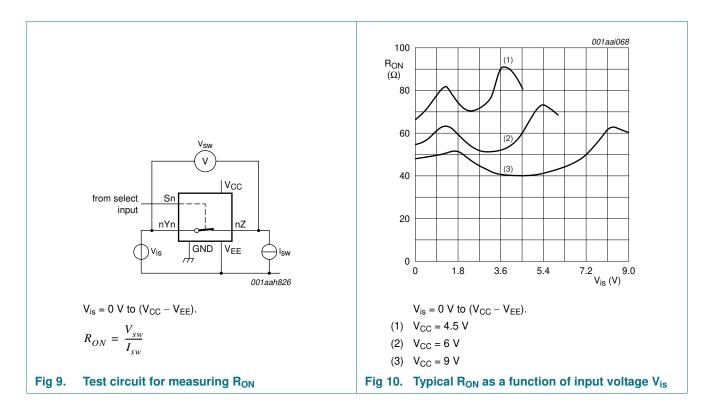
 $V_I = V_{IH}$ or V_{IL} ; for test circuit see <u>Figure 9</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output. For 74HC4052-Q100: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. For 74HCT4052-Q100: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -4$	0 °C to +85 °C[1]					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2] _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	100	225	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μ A	-	90	200	Ω
		V_{CC} = 4.5 V; V_{EE} = –4.5 V; I_{SW} = 1000 μA	-	70	165	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μ A	[2] _	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μ A	-	80	175	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μ A	-	70	150	Ω
		V_{CC} = 4.5 V; V_{EE} = –4.5 V; I_{SW} = 1000 μA	-	60	130	Ω
		$V_{is} = V_{CC}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μ A	[2] _	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μ A	-	90	200	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μ A	-	80	175	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μ A	-	65	150	Ω
ΔR_{ON}	ON resistance mismatch	$V_{is} = V_{CC}$ to V_{EE}				
	between channels	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	[2] _	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	9	-	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	8	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	6	-	Ω
$T_{amb} = -4$	0 °C to +125 °C					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μ A	[2] _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μ A	-	-	270	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μ A	-	-	240	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	195	Ω

Dual 4-channel analog multiplexer/demultiplexer

Table 6. R_{ON} resistance per switch for 74HC405-Q100 and 74HCT4052-Q100 ... continued


 $V_I = V_{IH}$ or V_{IL} ; for test circuit see <u>Figure 9</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output. For 74HC4052-Q100: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. For 74HCT4052-Q100: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2] _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	210	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	180	Ω
		V_{CC} = 4.5 V; V_{EE} = –4.5 V; I_{SW} = 1000 μA	-	-	160	Ω
		$V_{is} = V_{CC}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[2] _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	240	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	210	Ω
		V_{CC} = 4.5 V; V_{EE} = –4.5 V; I_{SW} = 1000 μA	-	-	180	Ω

[1] All typical values are measured at $T_{amb} = 25 \text{ °C}$.

[2] When supply voltages (V_{CC} - V_{EE}) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V, only use these devices for transmitting digital signals.

Dual 4-channel analog multiplexer/demultiplexer

Table 7. Static characteristics for 74HC4052-Q100

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Conditions Symbol Parameter Min Тур Max Unit T_{amb} = -40 °C to +85 °C[1] VIH **HIGH-level** input $V_{CC} = 2.0 V$ 1.5 1.2 _ ٧ voltage $V_{CC} = 4.5 V$ 3.15 2.4 _ V $V_{CC} = 6.0 V$ 4.2 3.2 ٧ - $V_{CC} = 9.0 V$ 6.3 4.7 _ ٧ VIL LOW-level input $V_{CC} = 2.0 V$ _ 0.8 0.5 V voltage $V_{CC} = 4.5 V$ 2.1 1.35 ٧ _ $V_{CC} = 6.0 V$ 2.8 1.8 ٧ _ $V_{CC} = 9.0 V$ 4.3 2.7 ٧ h input leakage current $V_{EE} = 0 V$; $V_I = V_{CC}$ or GND $V_{CC} = 6.0 V$ ±1.0 uΑ _ - $V_{CC} = 10.0 V$ ±2.0 μΑ --**OFF-state leakage** $V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ I_{S(OFF)} current $|V_{SW}| = V_{CC} - V_{EE}$; see Figure 11 per channel ±1.0 μA -all channels _ ±2.0 μΑ _ **ON-state leakage** $V_I = V_{IH} \text{ or } V_{IL}; |V_{SW}| = V_{CC} - V_{EE};$ ±2.0 μA I_{S(ON)} _ current $V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; \text{ see Figure 12}$ $V_{EE} = 0 V; V_I = V_{CC} \text{ or GND}; V_{is} = V_{EE} \text{ or } V_{CC};$ supply current Icc $V_{os} = V_{CC} \text{ or } V_{EE}$ $V_{CC} = 6.0 V$ 80.0 μA _ _ $V_{CC} = 10.0 V$ _ -160.0 μA C input capacitance _ 3.5 _ pF pF switch capacitance independent pins nYn 5 C_{sw} _ _ common pins nZ 12 pF --T_{amb} = -40 °C to +125 °C **HIGH-level** input $V_{CC} = 2.0 V$ 1.5 ٧ VIH _ _ voltage $V_{CC} = 4.5 V$ 3.15 --٧ $V_{CC} = 6.0 V$ 4.2 ٧ _ _ $V_{CC} = 9.0 V$ 6.3 _ V _ $V_{CC} = 2.0 V$ VIL LOW-level input 0.5 ٧ -voltage $V_{CC} = 4.5 V$ 1.35 -٧ - $V_{CC} = 6.0 V$ ٧ -1.8 _ $V_{CC} = 9.0 V$ _ -2.7 ٧ $V_{EE} = 0 V$; $V_I = V_{CC}$ or GND h input leakage current $V_{CC} = 6.0 V$ ±1.0 μΑ _ - $V_{CC} = 10.0 V$ -±2.0 μA

Dual 4-channel analog multiplexer/demultiplexer

Table 7. Static characteristics for 74HC4052-Q100 ...continued

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$I_{S(OFF)}$	OFF-state leakage current					
		per channel	-	-	±1.0	μA
		all channels	-	-	±2.0	μA
I _{S(ON)}	ON-state leakage current	$ \begin{array}{l} V_I = V_{IH} \text{ or } V_{IL}; V_{SW} = V_{CC} - V_{EE}; \\ V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; \text{ see } \overline{Figure \ 12} \end{array} $	-	-	±2.0	μA
I _{CC}	supply current					
		$V_{CC} = 6.0 V$	-	-	160.0	μA
		V _{CC} = 10.0 V	-	-	320.0	μA

[1] All typical values are measured at $T_{amb} = 25$ °C.

Table 8. Static characteristics for 74HCT4052-Q100

Voltages are referenced to GND (ground = 0 V).

*V*_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

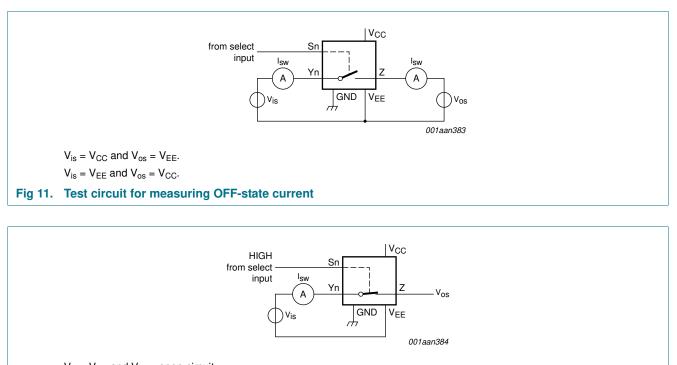
Vos is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -40$	0 °C to +85 °C <u>[1]</u>					
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 V$ to 5.5 V	-	1.2	0.8	V
l _l	input leakage current	$V_{I} = V_{CC} \text{ or } \text{GND}; V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	±1.0	μA
$I_{S(OFF)}$	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_I = V_{IH} or V_{IL} ; $ V_{SW} $ = $V_{CC} - V_{EE}$; see <u>Figure 11</u>				
		per channel	-	-	±1.0	μA
		all channels	-	-	±2.0	μA
I _{S(ON)}	ON-state leakage current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 10.0 \; V; \; V_{EE} = 0 \; V; \; V_{I} = V_{IH} \; \text{or} \; V_{IL}; \\ V_{SW} = V_{CC} - V_{EE}; \; \text{see} \; \underline{Figure \; 12} \end{array}$	-	-	±2.0	μA
I _{CC}	supply current	$V_{I} = V_{CC} \text{ or } GND; V_{is} = V_{EE} \text{ or } V_{CC};$ $V_{os} = V_{CC} \text{ or } V_{EE}$				
		$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	80.0	μA
		$V_{CC} = 5.0 \text{ V}; \text{ V}_{EE} = -5.0 \text{ V}$	-	-	160.0	μA
ΔI_{CC}	additional supply current	per input; V _I = V _{CC} - 2.1 V; other inputs at V _{CC} or GND; V _{CC} = 4.5 V to 5.5 V; V _{EE} = 0 V	-	45	202.5	μA
Cı	input capacitance		-	3.5	-	pF
C _{sw}	switch capacitance	independent pins nYn	-	5	-	pF
		common pins nZ	-	12	-	pF
T _{amb} = -40	0 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	V

74HC_HCT4052	_Q100
Product d	ata sheet

10 of 26

Dual 4-channel analog multiplexer/demultiplexer


Table 8. Static characteristics for 74HCT4052-Q100 ...continued

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	V
l _l	input leakage current	$V_{I} = V_{CC} \text{ or } GND; V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	±1.0	μA
$I_{S(OFF)}$	OFF-state leakage current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 10.0 \; V; \; V_{EE} = 0 \; V; \; V_{I} = V_{IH} \; \text{or} \; V_{IL}; \\ V_{SW} = V_{CC} - V_{EE}; \; \text{see} \; \underline{Figure \; 11} \end{array}$				
		per channel	-	-	±1.0	μA
		all channels	-	-	±2.0	μA
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{ see } \frac{\text{Figure 12}}{12}$	-	-	±2.0	μA
I _{CC}	supply current					
		$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	160.0	μA
		$V_{CC} = 5.0 \text{ V}; \text{ V}_{EE} = -5.0 \text{ V}$	-	-	320.0	μA
ΔI_{CC}	additional supply current	per input; V _I = V _{CC} - 2.1 V; other inputs at V _{CC} or GND; V _{CC} = 4.5 V to 5.5 V; V _{EE} = 0 V	-	-	220.5	μA

[1] All typical values are measured at $T_{amb} = 25 \text{ °C}$.

 $V_{is} = V_{CC}$ and $V_{os} =$ open-circuit.

 $V_{is} = V_{EE}$ and $V_{os} =$ open-circuit.

Fig 12. Test circuit for measuring ON-state current

Dual 4-channel analog multiplexer/demultiplexer

11. Dynamic characteristics

Table 9. Dynamic characteristics for 74HC4052-Q100

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$; for test circuit see <u>Figure 15</u>. V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -4$	0 °C to +85 °C <u>[1]</u>					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[2]			
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	14	75	ns
		$V_{CC} = 4.5 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	5	15	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	4	13	ns
		V_{CC} = 4.5 V; V_{EE} = –4.5 V	-	4	10	ns
t _{on}	turn-on time	\overline{E} , Sn to V _{os} ; R _L = $\infty \Omega$; see Figure 14	<u>[3]</u>			
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	105	405	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	38	81	ns
		V_{CC} = 5.0 V; V_{EE} = 0 V; C_L = 15 pF	-	28	-	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	30	69	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	26	58	ns
t _{off}	turn-off time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see <u>Figure 14</u>	<u>[4]</u>			
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	74	315	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	27	63	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	21	-	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	22	54	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	22	48	ns
C _{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC}	<u>[5]</u> _	57	-	pF
$T_{amb} = -4$	0 °C to +125 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[2]			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	90	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	18	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	15	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	12	ns
t _{on}	turn-on time	\overline{E} , Sn to V _{os} ; R _L = $\infty \Omega$; see Figure 14	[3]			
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	-	490	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	98	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	83	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	69	ns

Dual 4-channel analog multiplexer/demultiplexer

Table 9. Dynamic characteristics for 74HC4052-Q100 ...continued

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$; for test circuit see <u>Figure 15</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
toff turn-off time		\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see <u>Figure 14</u>	<u>[4]</u>			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	375	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	75	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	64	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	-	57	ns

- [1] All typical values are measured at $T_{amb} = 25 \text{ °C}$.
- [2] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [3] ton is the same as tPZH and tPZL.
- [4] t_{off} is the same as t_{PHZ} and t_{PLZ} .
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma \{(C_{L} + C_{sw}) \times V_{CC}^{2} \times f_{o}\} \text{ where:}$ f_i = input frequency in MHz:

 $f_o =$ output frequency in MHz;

N = number of inputs switching;

 Σ {(C_L + C_{sw}) × V_{CC}² × f₀} = sum of outputs;

 C_L = output load capacitance in pF;

 C_{sw} = switch capacitance in pF;

 V_{CC} = supply voltage in V.

Table 10. Dynamic characteristics for 74HCT4052-Q100

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF; for test circuit see <u>Figure 15</u>. V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +85 °C[1]					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see <u>Figure 13</u>	[2]			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	5	15	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	4	10	ns
t _{on} turn-on time	turn-on time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	[3]			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	41	88	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	18	-	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	28	60	ns
t _{off} turn-o	turn-off time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	[4]			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	26	63	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	13	-	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	21	48	ns
C _{PD}	power dissipation capacitance	per switch; V_{I} = GND to V_{CC} – 1.5 V	<u>[5]</u> _	57	-	pF

13 of 26

Dual 4-channel analog multiplexer/demultiplexer

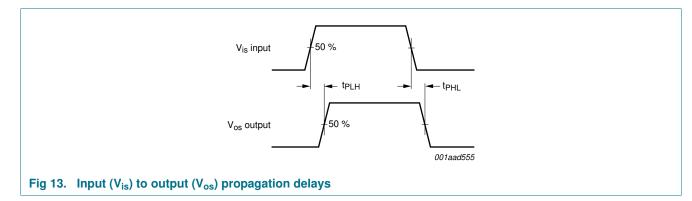
Table 10. Dynamic characteristics for 74HCT4052-Q100 ... continued

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$; for test circuit see <u>Figure 15</u>. V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

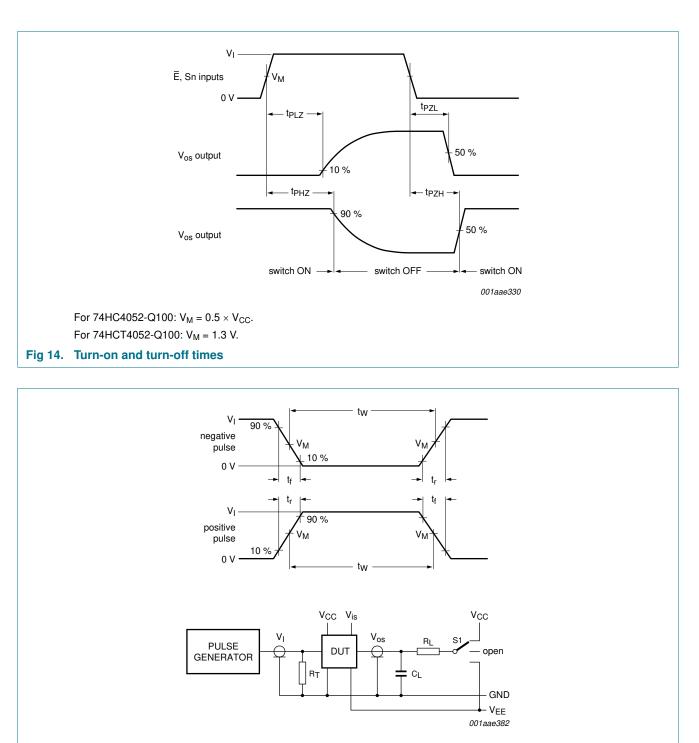
 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +125 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see <u>Figure 13</u>	[2]			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	18	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	-	12	ns
t _{on}	turn-on time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	<u>[3]</u>			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	105	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	-	72	ns
t _{off}	turn-off time	\overline{E} , Sn to V _{os} ; R _L = 1 k Ω ; see Figure 14	<u>[4]</u>			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	75	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	-	57	ns

[1] All typical values are measured at T_{amb} = 25 °C.


- [2] t_{pd} is the same as t_{PHL} and t_{PLH} .
- $[3] \quad t_{on} \text{ is the same as } t_{PZH \text{ and }} t_{PZL}.$
- [4] t_{off} is the same as t_{PHZ} and t_{PLZ} .

 $\Sigma\{(C_L + C_{sw}) \times V_{CC}{}^2 \times f_o\} = sum \text{ of outputs};$


 C_L = output load capacitance in pF;

 C_{sw} = switch capacitance in pF;

 V_{CC} = supply voltage in V.

Dual 4-channel analog multiplexer/demultiplexer

Definitions for test circuit; see Table 11:

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

- C_L = load capacitance including jig and probe capacitance.
- R_L = load resistance.
- S1 = Test selection switch.

Fig 15. Test circuit for measuring AC performance

Product data sheet

© NXP B.V. 2012. All rights reserved.

Dual 4-channel analog multiplexer/demultiplexer

Table 11. Test data

Test	Input				Load		S1 position	
	V _I V _{is}	Vis	t _r , t _f		CL	RL		
			at f _{max}	other ^[1]				
t _{PHL} , t _{PLH}	[2]	pulse	< 2 ns	6 ns	50 pF	1 kΩ	open	
t _{PZH} , t _{PHZ}	[2]	V _{CC}	< 2 ns	6 ns	50 pF	1 kΩ	V _{EE}	
t _{PZL} , t _{PLZ}	[2]	V_{EE}	< 2 ns	6 ns	50 pF	1 kΩ	V _{CC}	

[1] $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r and t_f with 50 % duty factor.

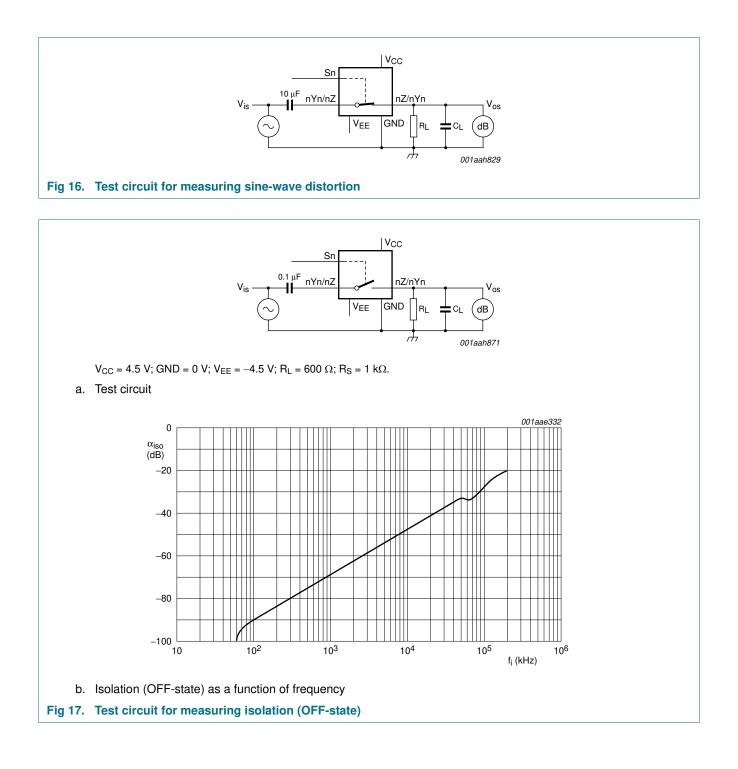
[2] V_I values:

a) For 74HC4052-Q100: V_I = V_{CC}

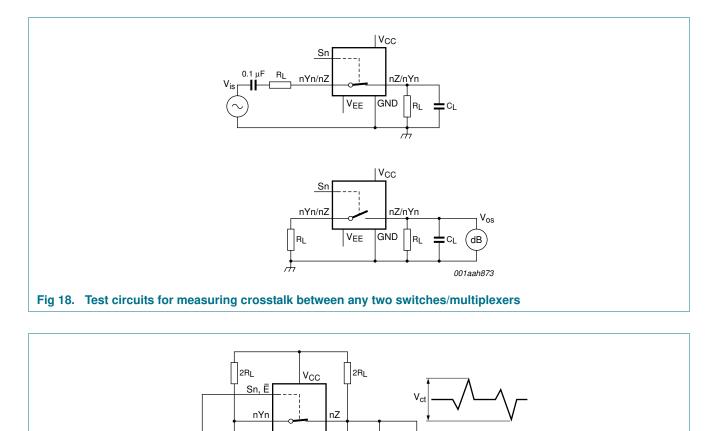
b) For 74HCT4052-Q100: V_I = 3 V

12. Additional dynamic characteristics

Table 12. Additional dynamic characteristics

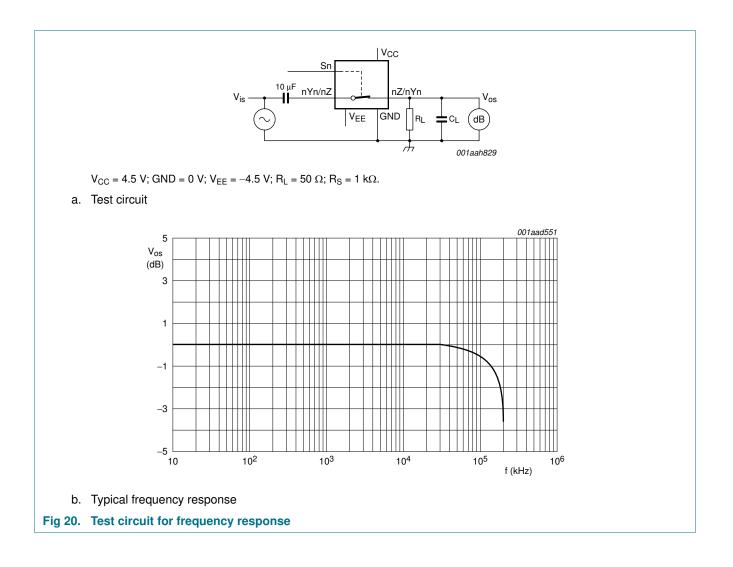

Recommended conditions and typical values; GND = 0 V; $T_{amb} = 25 °C$; $C_L = 50 pF$. V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{os} is the output voltage at pins nYn or nZ, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
d _{sin}	sine-wave distortion	$f_i = 1 \text{ kHz}; R_L = 10 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 16}{1000 \text{ sec } 16}$				
		V_{is} = 4.0 V (p-p); V_{CC} = 2.25 V; V_{EE} = -2.25 V	-	0.04	-	%
		V_{is} = 8.0 V (p-p); V_{CC} = 4.5 V; V_{EE} = –4.5 V	-	0.02	-	%
		$f_i = 10 \text{ kHz}; R_L = 10 \text{ k}\Omega; \text{see } \frac{\text{Figure 16}}{1000 \text{ kHz}}$				
		V_{is} = 4.0 V (p-p); V_{CC} = 2.25 V; V_{EE} = -2.25 V	-	0.12	-	%
		V_{is} = 8.0 V (p-p); V_{CC} = 4.5 V; V_{EE} = –4.5 V	-	0.06	-	%
α_{iso}	isolation (OFF-state)	$R_L = 600 \Omega$; $f_i = 1 MHz$; see Figure 17				
		V_{CC} = 2.25 V; V_{EE} = -2.25 V	<u>[1]</u> -	-50	-	dB
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	<u>[1]</u> -	-50	-	dB
Xtalk	crosstalk	between two switches/multiplexers; $R_L = 600 \Omega$; f _i = 1 MHz; see <u>Figure 18</u>				
		V_{CC} = 2.25 V; V_{EE} = -2.25 V	<u>[1]</u> _	-60	-	dB
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	<u>[1]</u> _	-60	-	dB
V _{ct} crosstalk voltage		peak-to-peak value between control and any switch. $R_L = 600 \Omega$; $f_i = 1 MHz$; \overline{E} or Sn square wave between V _{CC} and GND; $t_r = t_f = 6 ns$; see Figure 19				
		$V_{CC} = 4.5 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	110	-	mV
		$V_{CC} = 4.5 \text{ V}; \text{ V}_{EE} = -4.5 \text{ V}$	-	220	-	mV
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; see Figure 20				
		V_{CC} = 2.25 V; V_{EE} = -2.25 V	[2] _	170	-	MH
		$V_{CC} = 4.5 \text{ V}; V_{FF} = -4.5 \text{ V}$	[2]	180	-	MH:

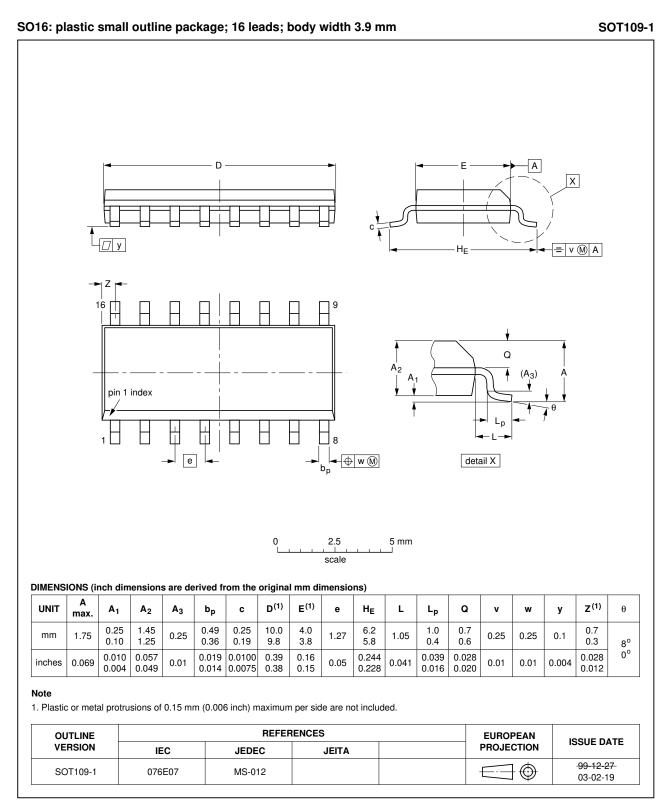

[1] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).

[2] Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

Dual 4-channel analog multiplexer/demultiplexer



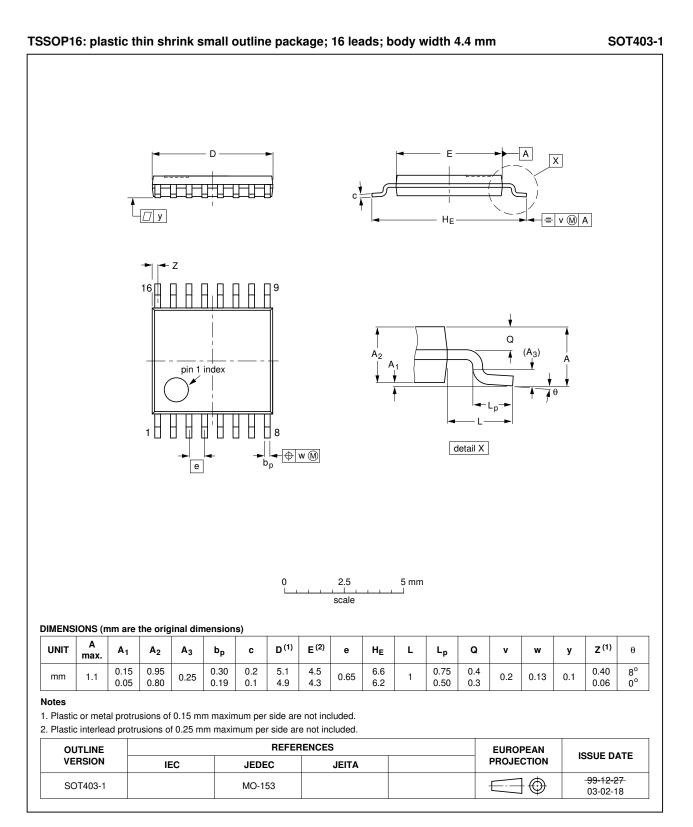
Dual 4-channel analog multiplexer/demultiplexer



Dual 4-channel analog multiplexer/demultiplexer

Dual 4-channel analog multiplexer/demultiplexer

13. Package outline


Fig 21. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

74HC HCT4052 Q100

20 of 26

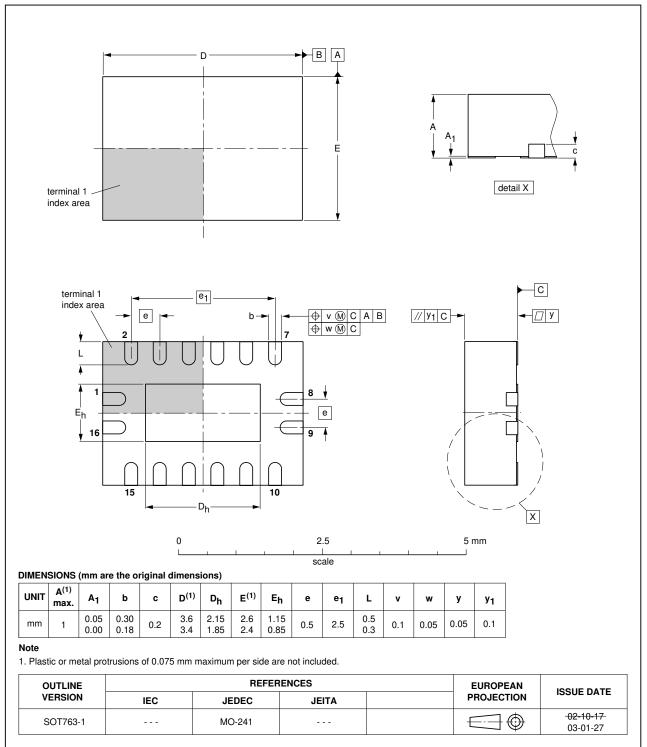

Dual 4-channel analog multiplexer/demultiplexer

Fig 22. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

Dual 4-channel analog multiplexer/demultiplexer

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 23. Package outline SOT763-1 (DHVQFN16)

All information provided in this document is subject to legal disclaimers.

Dual 4-channel analog multiplexer/demultiplexer

14. Abbreviations

Table 13. Abbreviations				
Acronym	Description			
CMOS	Complementary Metal Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			
MIL	Military			

15. Revision history

Table 14. Revision history	1			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4052_Q100 v.2	20121122	Product data sheet	-	74HC_HCT4052_Q100 v.1
Modifications:	CDM added	to features.		
74HC_HCT4052_Q100 v.1	20120720	Product data sheet	-	-

Dual 4-channel analog multiplexer/demultiplexer

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.