

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74HC4053-Q100; 74HCT4053-Q100

Triple 2-channel analog multiplexer/demultiplexer Rev. 2 — 22 November 2012 Prod

Product data sheet

General description

The 74HC4053-Q100; 74HCT4053-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The 74HC4053-Q100; 74HCT4053-Q100 is triple 2-channel analog multiplexer/demultiplexer with a common enable input (E). Each multiplexer/demultiplexer has two independent inputs/outputs (nY0 and nY1), a common input/output (nZ) and three digital select inputs (Sn). With \overline{E} LOW, one of the two switches is selected (low-impedance ON-state) by S1 to S3. With \overline{E} HIGH, all switches are in the high-impedance OFF-state, independent of S1 to S3.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S0 to S2, and \overline{E}). The V_{CC} to GND ranges are 2.0 V to 10.0 V for 74HC4053-Q100, and 4.5 V to 5.5 V for 74HCT4053-Q100. The analog inputs/outputs (nY0 to nY1, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} – V_{EE} may not exceed 10.0 V.

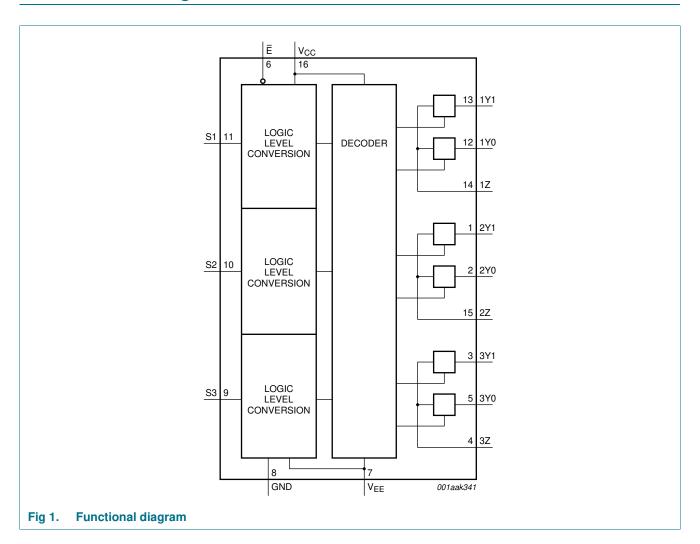
For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide analog input voltage range from -5 V to +5 V
- Low ON resistance:
 - 80 Ω (typical) at $V_{CC} V_{EE} = 4.5 \text{ V}$
 - 70 Ω (typical) at V_{CC} − V_{EE} = 6.0 V
 - 60 Ω (typical) at V_{CC} − V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ±5 V analog signals
- Typical 'break before make' built-in
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
 - CDM AEC-Q100-011 revision B exceeds 1000 V
- Multiple package options

3. Applications


- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

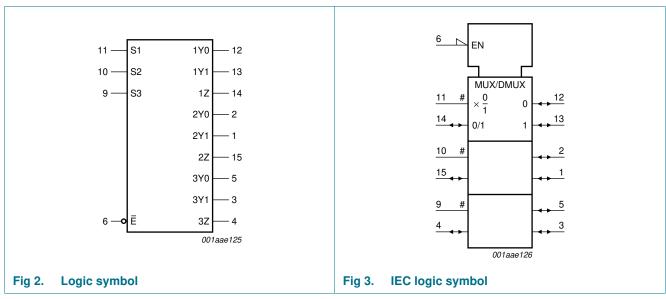
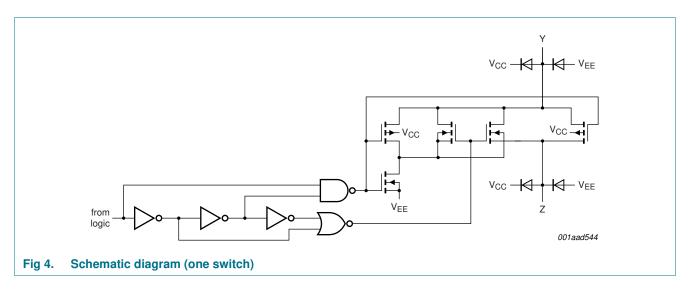

4. Ordering information

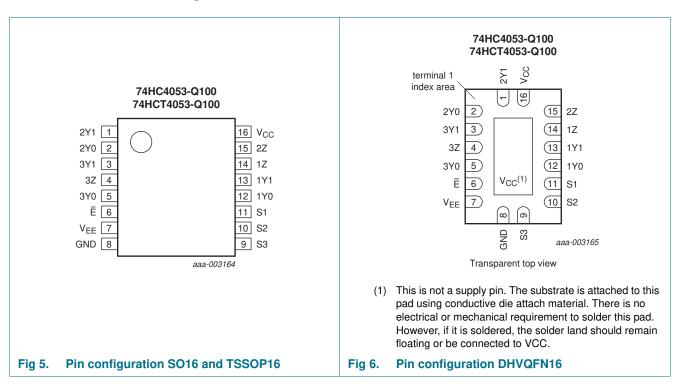
Table 1. Ordering information

Type number	Package				
	Temperature range	Name	Description	Version	
74HC4053D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1	
74HCT4053D-Q100			body width 3.9 mm		
74HC4053PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads;	SOT403-1	
74HCT4053PW-Q100			body width 4.4 mm		
74HC4053BQ-Q100	–40 °C to +125 °C	DHVQFN16		SOT763-1	
74HCT4053BQ-Q100	_		very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm		

5. Functional diagram



74HC_HCT4053_Q100


All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Ē	6	enable input (active LOW)
V _{EE}	7	supply voltage
GND	8	ground supply voltage
S1, S2, S3	11, 10, 9	select input
1Y0, 2Y0, 3Y0	12, 2, 5	independent input or output
1Y1, 2Y1, 3Y1	13, 1, 3	independent input or output
1Z, 2Z, 3Z	14, 15, 4	common output or input
V _{CC}	16	supply voltage

7. Functional description

Table 3. Function table [1]

Inputs		Channel on
Ē	Sn	
L	L	nY0 to nZ
L	Н	nY1 to nZ
Н	X	switches off

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		<u>[1]</u> –0.5	+11.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{SK}	switch clamping current	$V_{SW} < -0.5 \ V$ or $V_{SW} > V_{CC} + 0.5 \ V$	-	±20	mA
I_{SW}	switch current	$-0.5 \text{ V} < \text{V}_{\text{SW}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{EE}	supply current		-	±20	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-	-50	mA
T_{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		[2] -	500	mW
Р	power dissipation	per switch	-	100	mW

^[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows into terminals nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{CC} current flows out of terminals nYn. In this case, there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed V_{CC} or V_{EE} .

74HC_HCT4053_Q100

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2012. All rights reserved.

^[2] For SO16 package: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For TSSOP16 package: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K. For DHVQFN16 package: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	74H	IC4053-0	2100	74H0	CT4053-	Q100	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage	see <u>Figure 7</u> and <u>Figure 8</u>							
		V _{CC} – GND	2.0	5.0	10.0	4.5	5.0	5.5	V
		$V_{CC} - V_{EE}$	2.0	5.0	10.0	2.0	5.0	10.0	٧
VI	input voltage		GND	-	V_{CC}	GND	-	V_{CC}	V
V_{SW}	switch voltage		V_{EE}	-	V_{CC}	V_{EE}	-	V_{CC}	٧
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
	rate	$V_{CC} = 4.5 \text{ V}$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V
		$V_{CC} = 10.0 \text{ V}$	-	-	31	-	-	-	ns/V

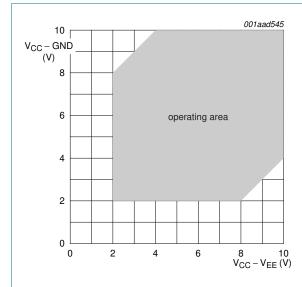


Fig 7. Guaranteed operating area as a function of the supply voltages for 74HC4053-Q100

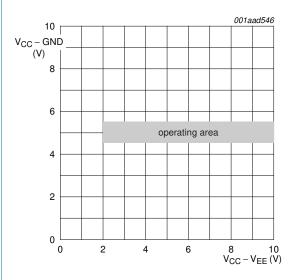


Fig 8. Guaranteed operating area as a function of the supply voltages for 74HCT4053-Q100

10. Static characteristics

R_{ON} resistance per switch for 74HC4053-Q100 and 74HCT4053-Q100 Table 6.

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see <u>Figure 9</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

For 74HC4053-Q100: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. For 74HCT4053-Q100: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	i °C					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[1] -	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	100	180	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	90	160	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	70	130	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[1] -	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	80	140	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	70	120	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	60	105	Ω
		$V_{is} = V_{CC}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[1] -	150	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	90	160	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	80	140	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	65	120	Ω
ΔR_{ON}	ON resistance mismatch	$V_{is} = V_{CC}$ to V_{EE}				
	between channels	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	[1] -	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	9	-	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	8	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	6	-	Ω
$T_{amb} = -4$	0 °C to +85 °C					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	<u>[1]</u> -	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	225	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	200	Ω
		$V_{CC} = 4.5 \text{ V}; V_{FF} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	165	Ω

R_{ON} resistance per switch for 74HC4053-Q100 and 74HCT4053-Q100 ...continued

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see <u>Figure 9</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

For 74HC4053-Q100: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. For 74HCT4053-Q100: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	<u>[1]</u> -	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	175	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	150	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μA	-	-	130	Ω
		$V_{is} = V_{CC}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	<u>[1]</u> _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	200	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	175	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μA	-	-	150	Ω
$T_{amb} = -4$	10 °C to +125 °C					
R _{ON(peak)} (ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	<u>[1]</u> _	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	270	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	240	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	195	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$				
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 100 \mu\text{A}$	<u>[1]</u> _	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	210	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	180	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μA	-	-	160	Ω
		$V_{is} = V_{CC}$				
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[1] -	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	240	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA	-	-	210	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	-	180	Ω

^[1] When supply voltages (V_{CC} - V_{EE}) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V, only use these devices for transmitting digital signals.

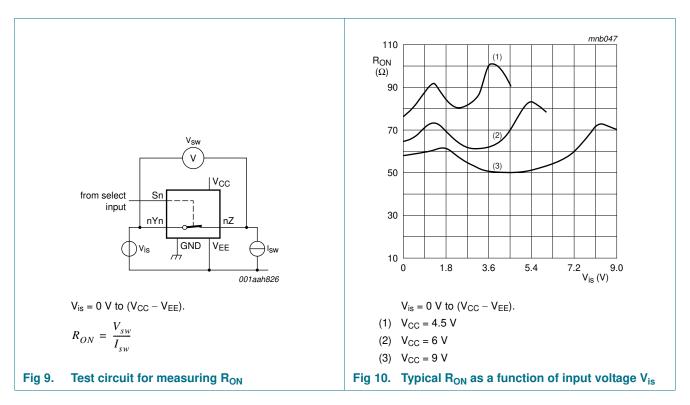


Table 7. Static characteristics for 74HC4053-Q100

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V_{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	1.2	-	V
	voltage	V _{CC} = 4.5 V	3.15	2.4	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	V
		V _{CC} = 9.0 V	6.3	4.7	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	V
		V _{CC} = 9.0 V	-	4.3	2.7	V
I _I	input leakage current	$V_{EE} = 0 \text{ V}; V_{I} = V_{CC} \text{ or GND}$				
		V _{CC} = 6.0 V	-	-	±0.1	μΑ
		V _{CC} = 10.0 V	-	-	±0.2	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 11				
		per channel	-	-	±0.1	μΑ
		all channels	-	-	±0.1	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $ V_{SW} = V_{CC} - V_{EE}$; $V_{CC} = 10.0$ V; $V_{EE} = 0$ V; see Figure 12	-	-	±0.1	μА

Table 7. Static characteristics for 74HC4053-Q100 ...continued

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	V_{EE} = 0 V; V_{I} = V_{CC} or GND; V_{is} = V_{EE} or V_{CC} ; V_{os} = V_{CC} or V_{EE}				
		V _{CC} = 6.0 V	-	-	8.0	μΑ
		V _{CC} = 10.0 V	-	-	16.0	μΑ
Cı	input capacitance		-	3.5	-	рF
C_{sw} s	switch capacitance	independent pins nYn	-	5	-	рF
		common pins nZ	-	8	-	рF
T _{amb} = -40	0 °C to +85 °C					
V _{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	-	-	V
	voltage	V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V_{IL}	LOW-level input	$V_{CC} = 2.0 \text{ V}$	-	-	0.5	V
	voltage	V _{CC} = 4.5 V	-	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	-	1.8	V
		V _{CC} = 9.0 V	-	-	2.7	V
I _I	input leakage current	$V_{EE} = 0 \text{ V}; V_{I} = V_{CC} \text{ or GND}$				
		V _{CC} = 6.0 V	-	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 11				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $ V_{SW} = V_{CC} - V_{EE}$; $V_{CC} = 10.0$ V; $V_{EE} = 0$ V; see Figure 12	-	-	±1.0	μА
I _{CC}	supply current	V_{EE} = 0 V; V_{I} = V_{CC} or GND; V_{is} = V_{EE} or V_{CC} ; V_{os} = V_{CC} or V_{EE}				
		V _{CC} = 6.0 V	-	-	80.0	μΑ
		V _{CC} = 10.0 V	-	-	160.0	μΑ
T _{amb} = -40	0 °C to +125 °C					
V _{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	-	-	V
	voltage	$V_{CC} = 4.5 \text{ V}$	3.15	-	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	LOW-level input	V _{CC} = 2.0 V	-	-	0.5	V
	voltage	V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
		V _{CC} = 9.0 V			2.7	V

74HC_HCT4053_Q100

Table 7. Static characteristics for 74HC4053-Q100 ...continued

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _l	input leakage current	$V_{EE} = 0 \text{ V}; V_{I} = V_{CC} \text{ or GND}$				
		$V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see <u>Figure 11</u>				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $ V_{SW} = V_{CC} - V_{EE}$; $V_{CC} = 10.0$ V; $V_{EE} = 0$ V; see Figure 12	-	-	±1.0	μΑ
I _{CC}	supply current	V_{EE} = 0 V; V_{I} = V_{CC} or GND; V_{is} = V_{EE} or V_{CC} ; V_{os} = V_{CC} or V_{EE}				
		$V_{CC} = 6.0 \text{ V}$	-	-	160.0	μΑ
		V _{CC} = 10.0 V	-	-	320.0	μΑ

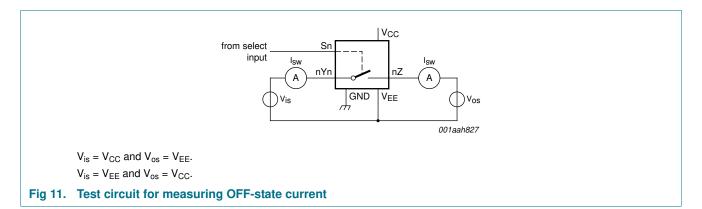
Table 8. Static characteristics for 74HCT4053-Q100

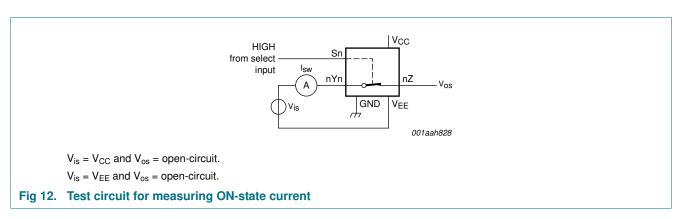
Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.2	8.0	V
II	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $V_{EE} = 0 \text{ V}$	-	-	±0.1	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 11				
		per channel	-	-	±0.1	μΑ
		all channels	-	-	±0.1	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 12	-	-	±0.1	μА
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	8.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	16.0	μΑ
ΔI_{CC}	additional supply current	per input; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$	-	50	180	μΑ
C _I	input capacitance		-	3.5	-	рF
C _{sw}	switch capacitance	independent pins nYn	-	5	-	рF
		common pins nZ	-	8	-	pF


Table 8. Static characteristics for 74HCT4053-Q100 ...continued


Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -40) °C to +85 °C					
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	0.8	V
l _i	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $V_{EE} = 0 \text{ V}$	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 11				
		per channel	-	-	±1.0	μА
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 12	-	-	±1.0	μА
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	80.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	160.0	μΑ
Δl _{CC}	additional supply current	per input; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$	-	-	225	μΑ
$T_{amb} = -40$) °C to +125 °C					
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	-	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	8.0	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 11				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	V_{CC} = 10.0 V; V_{EE} = 0 V; V_{I} = V_{IH} or V_{IL} ; $ V_{SW} $ = V_{CC} - V_{EE} ; see Figure 12	-	-	±1.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		$V_{CC} = 5.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	160.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	320.0	μΑ
Δl _{CC}	additional supply current	per input; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$	-	-	245	μА

11. Dynamic characteristics

Table 9. Dynamic characteristics for 74HC4053-Q100

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see Figure 15.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	<u>[1]</u>			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	15	60	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	5	12	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	4	10	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	4	8	ns
t _{on}	turn-on time	\overline{E} to $V_{os};R_{L}=\infty\Omega;see\underline{Figure14}$	<u>[2]</u>			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	60	220	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	20	44	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	17	-	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	16	37	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		Sn to V_{os} ; $R_L = \infty \Omega$; see Figure 14	<u>[2]</u>			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	75	220	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	25	44	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	21	-	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	20	37	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	<u>[3]</u>			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	63	210	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	21	42	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	18	-	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	17	36	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	29	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	60	210	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	20	42	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	17	-	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	16	36	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	29	ns
C _{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC}	<u>[4]</u> -	36	-	pF

 Table 9.
 Dynamic characteristics for 74HC4053-Q100 ...continued

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$; for test circuit see <u>Figure 15</u>.

V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Gamma_{amb} = -4$	0 °C to +85 °C					
pd	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	<u>[1]</u>			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	75	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	15	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	13	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	10	ns
t _{on}	turn-on time	\overline{E} to $V_{os};R_{L}=\infty\Omega;see\underline{Figure}\underline{14}$	[2]			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	275	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	55	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	47	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
		Sn to V_{os} ; $R_L = \infty \Omega$; see Figure 14	[2]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	275	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	55	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	47	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
off	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	265	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	53	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	45	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	36	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	<u>[3]</u>			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	265	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	53	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	45	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	36	ns
$\Gamma_{amb} = -4$	0 °C to +125 °C					
od	propagation delay	V_{is} to V_{os} ; $R_{L} = \infty \Omega$; see Figure 13	<u>[1]</u>			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	90	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	18	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	15	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	12	ns

 Table 9.
 Dynamic characteristics for 74HC4053-Q100 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{on}	turn-on time	\overline{E} to $V_{os};R_{L}=\infty\Omega;see\underline{Figure14}$	[2]			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	330	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	66	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	56	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	47	ns
		Sn to V_{os} ; $R_L = \infty \Omega$; see Figure 14	[2]			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	330	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	66	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	56	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	47	ns
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\underline{Figure 14}$	[3]			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	315	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	63	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	54	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	44	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	315	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	63	ns
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	54	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	44	ns

^[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} \text{ where: }$$

 f_i = input frequency in MHz;

fo = output frequency in MHz;

N = number of inputs switching;

 $\Sigma \{(C_L + C_{sw}) \times V_{CC}{}^2 \times f_o\} = sum \ of \ outputs;$

 C_L = output load capacitance in pF;

 C_{sw} = switch capacitance in pF;

 V_{CC} = supply voltage in V.

^[2] ton is the same as tPZH and tPZL.

^[3] t_{off} is the same as t_{PHZ} and t_{PLZ} .

Table 10. Dynamic characteristics for 74HCT4053-Q100

 $GND = 0 \ V; t_r = t_f = 6 \ ns; \ C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

*V*_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Тур	Max	Unit	
T _{amb} = 25	°C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[1]			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	5	12	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	4	8	ns
t _{on}	turn-on time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\underline{\text{Figure } 14}$	[2]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	27	48	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	23	-	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	16	34	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[2]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	25	48	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	21	-	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	16	34	ns
t _{off}	turn-off time	\overline{E} to $V_{os};R_L=1\;k\Omega;see\;\underline{Figure}\;14$	[3]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	24	44	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	20	-	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	22	44	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	19	-	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
C_{PD}	power dissipation capacitance	per switch; $V_I = GND$ to $V_{CC} - 1.5 V$	[4] -	36	-	pF
T _{amb} = -40	0 °C to +85 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[1]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	15	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	10	ns
t _{on}	turn-on time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[2]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	60	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	43	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[2]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	60	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	43	ns
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	55	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	55	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
4HC_HCT4053_Q	100	All information provided in this document is subject to legal disclaimers.			© NXP B.V. 2012. All rights re	

Table 10. Dynamic characteristics for 74HCT4053-Q100 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

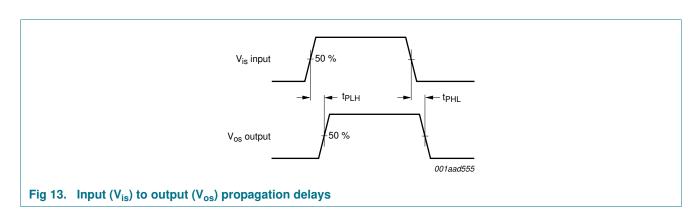
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -4$	0 °C to +125 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[1]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	18	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	12	ns
t _{on}	turn-on time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[2]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	72	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	51	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[2]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	72	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	51	ns
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	66	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	47	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	66	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	47	ns

- [1] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [2] t_{on} is the same as t_{PZH} and t_{PZL} .
- [3] t_{off} is the same as t_{PHZ} and t_{PLZ} .
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

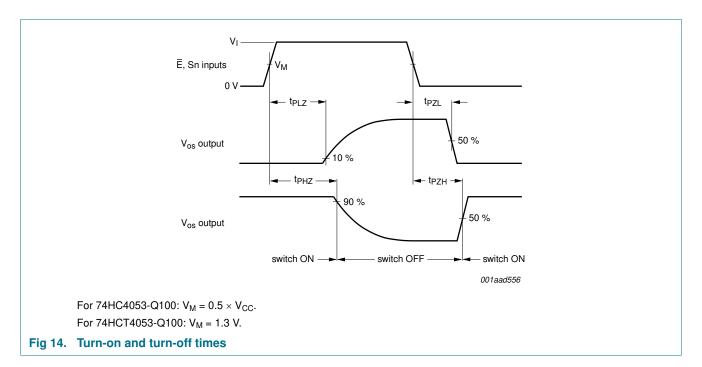
$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{ (C_L + C_{sw}) \times V_{CC}^2 \times f_o \} \text{ where: }$$

f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$


N = number of inputs switching;

 $\Sigma \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = \text{sum of outputs};$


C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

V_{CC} = supply voltage in V.

74HC_HCT4053_Q100

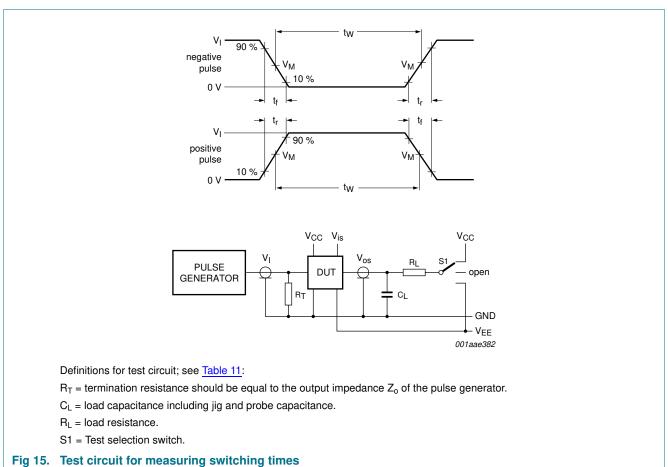


Table 11. Test data

Test	Input				Load		S1 position
	Vı	V _{is}	t _r , t _f		CL	R _L	
			at f _{max}	other[1]			
t _{PHL} , t _{PLH}	[2]	pulse	< 2 ns	6 ns	50 pF	1 kΩ	open
t _{PZH} , t _{PHZ}	[2]	V _{CC}	< 2 ns	6 ns	50 pF	1 kΩ	V_{EE}
t _{PZL} , t _{PLZ}	[2]	V_{EE}	< 2 ns	6 ns	50 pF	1 kΩ	V_{CC}

- [1] $t_r = t_f = 6$ ns; when measuring t_{max} , there is no constraint to t_r and t_f with 50 % duty factor.
- [2] V_I values:
 - a) For 74HC4053-Q100: $V_I = V_{CC}$
 - b) For 74HCT4053-Q100: $V_1 = 3 \text{ V}$

11.1 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

Recommended conditions and typical values; GND = 0 V; T_{amb} = 25 °C; C_L = 50 pF. V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{os} is the output voltage at pins nYn or nZ, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
d _{sin}	sine-wave distortion	$f_i = 1 \text{ kHz}$; $R_L = 10 \text{ k}\Omega$; see Figure 16				
		$V_{is} = 4.0 \text{ V (p-p)}; V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	0.04	-	%
		$V_{is} = 8.0 \text{ V (p-p)}; V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	0.02	-	%
		$f_i = 10 \text{ kHz}$; $R_L = 10 \text{ k}\Omega$; see Figure 16				
		$V_{is} = 4.0 \text{ V (p-p)}; V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	0.12	-	%
		$V_{is} = 8.0 \text{ V (p-p)}; V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	0.06	-	%
α_{iso}	isolation (OFF-state)	$R_L = 600 \Omega$; $f_i = 1 MHz$; see Figure 17				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[1] _	-50	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[1] _	-50	-	dB
Xtalk	crosstalk	between two switches/multiplexers; $R_L = 600 \Omega$; $f_i = 1 MHz$; see Figure 18				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[1] -	-60	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[1] -	-60	-	dB
V _{ct} crosstalk voltage		peak-to-peak value between control and any switch. $R_L = 600 \ \Omega$; $f_i = 1 \ MHz$; \overline{E} or Sn square wave between V_{CC} and GND; $t_r = t_f = 6 \ ns$; see Figure 19				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	110	-	mV
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	220	-	mV
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; see Figure 20				
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[2] _	160	-	MHz
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[2] -	170	-	MHz

^[1] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).

74HC HCT4053 Q100

20 of 30

Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

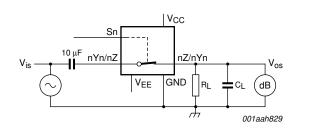
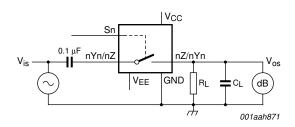
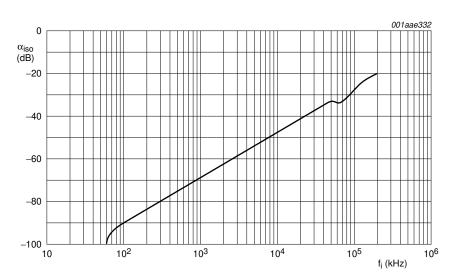
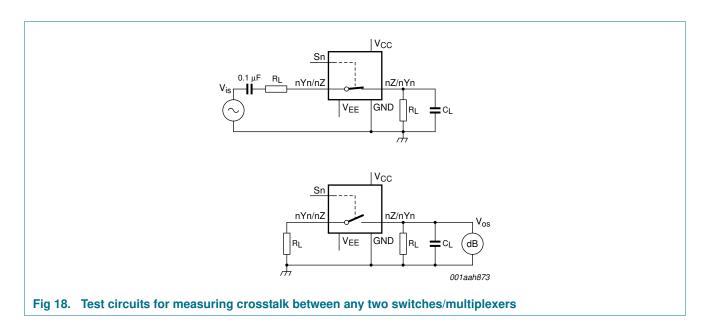
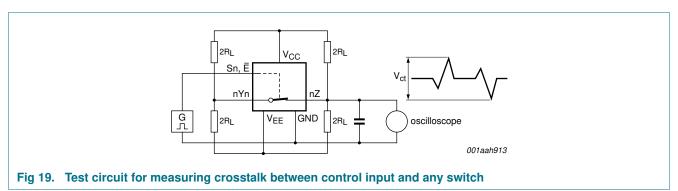
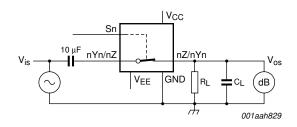




Fig 16. Test circuit for measuring sine-wave distortion

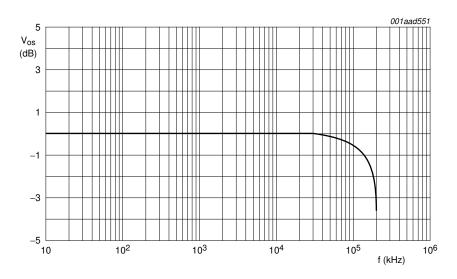

 V_{CC} = 4.5 V; GND = 0 V; V_{EE} = -4.5 V; R_L = 600 Ω ; R_S = 1 k Ω .


a. Test circuit



b. Isolation (OFF-state) as a function of frequency

Fig 17. Test circuit for measuring isolation (OFF-state)



 V_{CC} = 4.5 V; GND = 0 V; V_{EE} = –4.5 V; R_L = 50 $\Omega;$ R_S = 1 $k\Omega.$

a. Test circuit

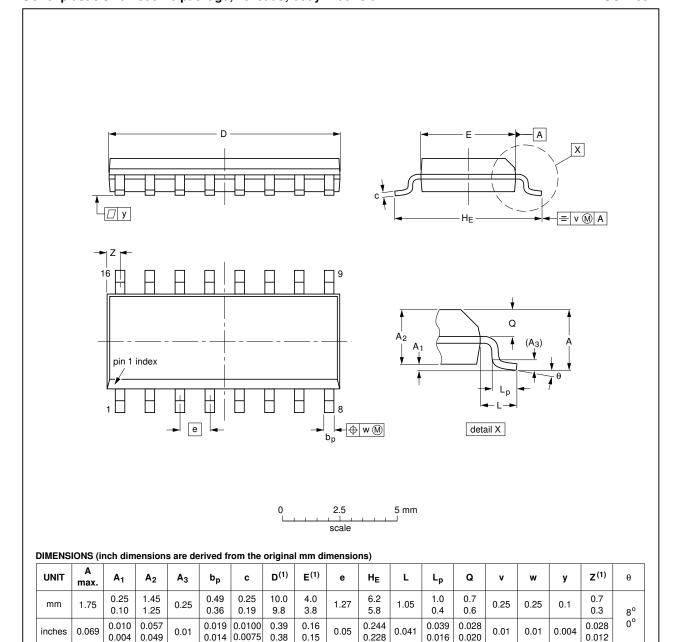

b. Typical frequency response

Fig 20. Test circuit for frequency response

12. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFERENCES		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	
SOT109-1	076E07	MS-012			99-12-27 03-02-19

Fig 21. Package outline SOT109-1 (SO16)

74HC_HCT4053_Q100