: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74HC4067; 74HCT4067

16-channel analog multiplexer/demultiplexer

Rev. 5-13 December 2011
Product data sheet

1. General description

The $74 \mathrm{HC} 4067 ; 74 \mathrm{HCT} 4067$ is a high-speed Si -gate CMOS device and is pin compatible with the HEF4067B. The device is specified in compliance with JEDEC standard no. 7A.

The 74 HC 4067 ; 74 HCT 4067 is a 16 -channel analog multiplexer/demultiplexer with four address inputs (S0 to S3), an active-LOW enable input ($\overline{\mathrm{E}}$), sixteen independent inputs/outputs (Y0 to Y15) and a common input/output (Z).

The 74HC4067; 74HCT4067 contains sixteen bidirectional analog switches, each with one side connected to an independent input/output (Y 0 to Y 15) and the other side connected to a common input/output (Z).

With pin $\bar{E}=$ LOW, one of the sixteen switches is selected by pins S0 to S3 (low impedance ON-state). All unselected switches are in the high-impedance OFF-state. With pin $\overline{\mathrm{E}}=$ HIGH, all switches are in the high-impedance OFF-state, independent of pins S0 to S3.

The analog inputs/outputs (Y 0 to Y 15 , and Z) can swing between V_{CC} as a positive limit and GND as a negative limit. V_{CC} to GND may not exceed 10 V .

2. Features and benefits

- Low ON resistance:
-80Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- 70Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$
- 60Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$
- Typical 'break before make' built-in

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

74HC4067; 74HCT4067

16-channel analog multiplexer/demultiplexer

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4067				
74HC4067N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP24	plastic dual in-line package; 24 leads (600 mil); reverse bending	SOT101-1
74HC4067D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1
74HC4067DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1
74HC4067PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1
74HC4067BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85 \mathrm{~mm}$	SOT815-1
74HCT4067				
74HCT4067N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP24	plastic dual in-line package; 24 leads (600 mil); reverse bending	SOT101-1
74HCT4067D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1
74HCT4067DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1
74HCT4067PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1
74HCT4067BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85 \mathrm{~mm}$	SOT815-1

5. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Schematic diagram (one switch)

Fig 4. Functional diagram

Fig 5. Logic diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Z	1	common input or output
Y7, Y6, Y5, Y4, Y3, Y2, Y1, Y0, Y15,	$2,3,4,5,6,7,8,9,16,17,18,19,20,21,22,23$	independent input or output
Y14, Y13, Y12, Y11, Y10, Y9, Y8		
S0, S1, S3, S2	$10,11,13,14$	address input 0
GND	12	ground (0 V)
\bar{E}	15	enable input (active LOW)
$V_{C C}$	24	supply voltage

7. Functional description

Table 3. Function table[1]

Inputs					Channel ON
$\overline{\mathrm{E}}$	S3	S2	S1	S0	
L	L	L	L	L	Y0 to Z
L	L	L	L	H	Y1 to Z
L	L	L	H	L	Y2 to Z
L	L	L	H	H	Y3 to Z
L	L	H	L	L	Y4 to Z
L	L	H	L	H	Y5 to Z
L	L	H	H	L	Y6 to Z
L	L	H	H	H	Y7 to Z
L	H	L	L	L	Y8 to Z
L	H	L	L	H	Y9 to Z
L	H	L	H	L	Y10 to Z
L	H	L	H	H	Y11 to Z
L	H	H	L	L	Y12 to Z
L	H	H	L	H	Y13 to Z
L	H	H	H	L	Y14 to Z
L	H	H	H	H	Y15 to Z
H	X	X	X	X	-

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$\mathrm{L}=$ LOW voltage level;
$\mathrm{X}=$ don't care.

8. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		${ }^{[1]}$	-0.5	+11.0
I_{IK}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{SK}	switch clamping current	$\mathrm{V}_{\mathrm{SW}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{SW}	switch current	$\mathrm{V}_{\mathrm{SW}}=-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 25	mA
I_{CC}	supply current		-	50	mA
$\mathrm{I}_{\mathrm{GND}}$	ground current	storage temperature	-	-50	mA
$\mathrm{~T}_{\mathrm{Stg}}$		-65	+150	${ }^{\circ} \mathrm{C}$	

74HC4067; 74HCT4067

16-channel analog multiplexer/demultiplexer

Table 4. Limiting values ...continued
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$P_{\text {tot }}$	total power dissipation	$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		DIP24 package	$\underline{[2]}-$	750	mW
		SO24 package	$\underline{[3]}-$	500	mW
		SSOP24 package	$\underline{[4]}-$	500	mW
		TSSOP24 package	$\underline{[4]}-$	500	mW
		DHVQFN24 package	$\underline{[5]}-$	500	mW
		per switch	-	100	mW

[1] To avoid drawing V_{CC} current out of terminal Z , when switch current flows in terminals Yn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no V_{cc} current will flow out of terminals Yn . In this case there is no limit for the voltage drop across the switch, but the voltages at $Y n$ and Z may not exceed $V_{C C}$ or GND.
[2] For DIP24 package: $P_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[3] For SO24 package: $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[4] For SSOP24 and TSSOP24 packages: $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.
[5] For DHVQFN24 package: $P_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
74HC4067						
V_{CC}	supply voltage		2.0	5.0	10.0	V
V_{1}	input voltage		GND	-	V_{CC}	V
$\mathrm{V}_{\text {sw }}$	switch voltage		GND	-	V_{Cc}	V
$\Delta t / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	625	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	1.67	139	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	83	ns
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	31	ns
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+125	${ }^{\circ} \mathrm{C}$
74HCT4067						
V_{CC}	supply voltage		4.5	5.0	5.5	V
V_{1}	input voltage		GND	-	V_{CC}	V
$\mathrm{V}_{\text {Sw }}$	switch voltage		GND	-	$\mathrm{V}_{\text {cc }}$	V
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	1.67	139	ns
Tamb	ambient temperature		-40	+25	+125	${ }^{\circ} \mathrm{C}$

10. Static characteristics

Table 6. Ron resistance per switch for types 74HC4067 and 74HCT4067 $V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.
For 74HC4067: $V_{C C}-G N D=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4067: $V_{C C}-G N D=4.5 \mathrm{~V}$.

Symbol	Parameter	Conditions		$25^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Typ	Max	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{R}_{\text {ON(} \text { (eak) }}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to GND						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A}$	[1]	-	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$		110	180	225	270	Ω
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$		95	160	200	240	Ω
		$\mathrm{V}_{\text {CC }}=9.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$		75	130	165	195	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$						
		$\mathrm{V}_{\text {CC }}=2.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=100 \mu \mathrm{~A}$	[1]	150	-	-	-	
		$\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$		90	160	200	240	Ω
		$\mathrm{V}_{C C}=6.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$		80	140	175	210	Ω
		$\mathrm{V}_{\text {CC }}=9.0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$		70	120	150	180	Ω
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance mismatch between channels	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to GND						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	[1]	-	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		9	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		8	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		6	-	-	-	Ω

[1] At supply voltages $\left(\mathrm{V}_{\mathrm{Cc}}-\mathrm{GND}\right)$ approaching 2 V , the analog switch ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

$V_{\text {is }}=0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)$
$R_{O N}=\frac{V_{S W}}{I_{S W}}$

Fig 8. Test circuit for measuring R_{ON}

$$
\mathrm{V}_{\text {is }}=0 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{Cc}}-\mathrm{GND}\right)
$$

(1) $V_{C C}=4.5 \mathrm{~V}$
(2) $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$
(3) $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$

Fig 9. Typical R_{ON} as a function of input voltage $\mathrm{V}_{\text {is }}$

Table 7. Static characteristics 74HC4067
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	1.5	1.2	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	2.4	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	3.2	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	4.7	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	0.8	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	2.1	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	2.8	1.80	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	4.3	2.70	V
I_{1}	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 0.2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & V_{C C}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 10 \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.8	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & V_{C C}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 11 \end{aligned}$	-	-	± 0.8	$\mu \mathrm{A}$

Table 7. Static characteristics 74HC4067 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
lcc	supply current	$\begin{aligned} & V_{I}=V_{C C} \text { or } G N D ; V_{\text {is }}=G N D \text { or } V_{C C} ; \\ & V_{o s}=V_{C C} \text { or } G N D \end{aligned}$				
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	0.50	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	1.80	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-	2.70	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(OFF) }}$	OFF-state leakage current	$\begin{aligned} & V_{C C}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
I_{CC}	supply current	$\begin{aligned} & V_{I}=V_{C C} \text { or } G N D ; V_{\text {is }}=G N D \text { or } V_{C C} ; \\ & V_{o s}=V_{C C} \text { or } G N D \end{aligned}$				
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	160	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	0.50	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.80	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-	2.70	V
	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$

Table 7. Static characteristics 74HC4067 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$I_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & V_{I}=V_{C C} \text { or } G N D ; V_{\text {is }}=G N D \text { or } V_{C C} ; \\ & V_{o s}=V_{C C} \text { or } G N D \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	160	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	320	$\mu \mathrm{A}$

Table 8. Static characteristics 74HCT4067
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.8	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure } 11 \end{aligned}$	-	-	± 0.8	$\mu \mathrm{A}$
I_{CC}	supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND ; $\mathrm{V}_{\text {is }}=\mathrm{GND}$ or V_{CC}; $V_{\text {os }}=V_{C C}$ or $G N D ; V_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	8.0	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				
		pin $\overline{\mathrm{E}}$	-	60	216	$\mu \mathrm{A}$
		pin Sn	-	50	180	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$

Table 8. Static characteristics 74HCT4067 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(ON }}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
I_{CC}	supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; V_{\text {is }}=G N D \text { or } V_{C C} ; \\ & V_{o s}=V_{C C} \text { or } G N D ; V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	80.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				
		pin $\overline{\mathrm{E}}$	-	-	270	$\mu \mathrm{A}$
		pin Sn	-	-	225	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{C C}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Figure } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
I_{CC}	supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; V_{\text {is }}=G N D \text { or } V_{C C} ; \\ & V_{o s}=V_{C C} \text { or } G N D ; V_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	160	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				
		pin $\overline{\mathrm{E}}$	-	-	294	$\mu \mathrm{A}$
		pin Sn	-	-	245	$\mu \mathrm{A}$

$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {os }}=\mathrm{GND}$
$V_{\text {is }}=G N D$ and $V_{o s}=V_{C C}$
Fig 10. Test circuit for measuring OFF-state leakage current

$$
\begin{aligned}
& V_{\text {is }}=V_{\mathrm{CC}} \text { and } \mathrm{V}_{\mathrm{os}}=\text { open } \\
& \mathrm{V}_{\text {is }}=G N D \text { and } V_{o s}=\text { open }
\end{aligned}
$$

Fig 11. Test circuit for measuring ON-state leakage current

11. Dynamic characteristics

Table 9. Dynamic characteristics 74HC4067
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Table 9. Dynamic characteristics 74HC4067 ...continued
$G N D=0 V ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		$25^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Typ	Max	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{array}{c\|} \text { Max } \\ \left(125{ }^{\circ} \mathrm{C}\right) \end{array}$	
$\mathrm{t}_{\text {on }}$	turn-on time	$\overline{\mathrm{E}}$ to Yn; see Figure 13	[4]					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		80	275	345	415	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		29	55	69	83	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		26	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		23	47	59	71	ns
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		17	42	53	63	ns
		Sn to Yn						
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$		88	300	375	450	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		32	60	75	90	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		29	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		26	51	64	77	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		18	45	56	68	ns
		$\overline{\mathrm{E}}$ to Z						
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$		85	275	345	415	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		31	55	69	83	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		25	47	59	71	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		18	42	53	63	ns
		Sn to Z						
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$		94	300	375	450	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		34	60	75	90	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		27	51	64	77	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		19	45	56	68	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[5]	29	-	-	-	pF

[1] $t_{p d}$ is the same as $t_{P H L}$ and $t_{\text {PLH }}$.
[2] Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.
[3] $t_{o n}$ is the same as $t_{P H Z}$ and $t_{\text {PLZ }}$.
[4] $t_{\text {off }}$ is the same as $t_{\text {PZH }}$ and $t_{P Z L}$.
[5] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in μW).
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{sw}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Table 10. Dynamic characteristics 74HCT4067
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see $\underline{\text { Figure } 14}$.
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions				$-40^{\circ} \mathrm{C}$ to	+125 ${ }^{\circ} \mathrm{C}$	Unit
				Typ	Max	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{array}{c\|} \text { Max } \\ \left(1255^{\circ} \mathrm{C}\right) \end{array}$	
$t_{\text {pd }}$	propagation delay	Yn to Z; see Figure 12	[1][2]					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		9	15	19	22	ns
		Z to Yn						
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$		6	12	15	18	ns
$\mathrm{t}_{\text {off }}$	turn-off time	$\overline{\mathrm{E}}$ to Yn; see Figure 13	[3]					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		26	55	69	83	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		26	-	-	-	ns
		Sn to Yn						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		31	55	69	83	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		30	-	-	-	ns
		$\overline{\mathrm{E}}$ to Z						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		30	60	75	90	ns
		Sn to Z						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		35	60	75	90	ns
$\mathrm{t}_{\text {on }}$	turn-on time	$\overline{\mathrm{E}}$ to Yn; see Figure 13	[4]					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		32	60	75	90	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		32	-	-	-	ns
		Sn to Yn						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		35	60	75	90	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		33	-	-	-	ns
		$\overline{\mathrm{E}}$ to Z						
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		38	65	81	98	ns
		Sn to Z						
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		38	65	81	98	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to ($\left.\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	[5]	29	-	-	-	pF

[1] $t_{p d}$ is the same as $t_{\text {PHL }}$ and $t_{\text {PLH }}$.
[2] Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.
[3] $t_{o n}$ is the same as $t_{\text {PHz }}$ and $t_{\text {PLZ }}$.
[4] $\mathrm{t}_{\text {of }}$ is the same as $\mathrm{t}_{\text {PZH and }} \mathrm{t}_{\text {PZL }}$.
[5] $\mathrm{C}_{P \mathrm{D}}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{sw}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

12. Waveforms

Fig 12. Input $\left(\mathrm{V}_{\mathrm{is}}\right)$ to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays

Measurement points are shown in Table 11.
Fig 13. Turn-on and turn-off times

Table 11. Measurement points

Type	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{V}_{\mathbf{M}}$
74 HC 4067	$\mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$
74 HCT 4067	3.0 V	1.3 V

Test data is given in Table 12.
Definitions test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{L}=$ Load resistor.
S1 = Test selection switch.
Fig 14. Load circuitry for measuring switching times

Table 12. Test data

Test	Input				Output		S1 position
	Control E	Address Sn	Switch Yn (Z)	t_{r}, t_{f}	Switch Z (Yn)		
	$\mathrm{V}_{\underline{1}} \underline{\text { [1] }}$	$V_{1} \underline{[1]}$	$\mathrm{V}_{\text {is }}$		\mathbf{C}_{L}	\mathbf{R}_{L}	
tphL, tPLH	GND	GND or V_{CC}	GND to $\mathrm{V}_{\text {CC }}$	6 ns	50 pF	-	open
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PzH }}$	GND to V_{Cc}	GND to V_{CC}	$V_{C C}$	6 ns	$50 \mathrm{pF}, 15 \mathrm{pF}$	$1 \mathrm{k} \Omega$	GND
$t_{\text {PLZ }}$, tPZL	GND to V_{Cc}	GND to V_{CC}	GND	6 ns	50 pF , 15 pF	$1 \mathrm{k} \Omega$	$V_{C C}$

[1] For 74HCT4067: maximum input voltage $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$.

13. Additional dynamic characteristics

Table 13. Additional dynamic characteristics
Recommended conditions and typical values; GND $=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see $\underline{\text { Figure } 15}$				
		$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {is }(p-p)}=4.0 \mathrm{~V}$	-	0.04	-	\%
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V} ; \mathrm{V}_{\text {is }(p-p)}=8.0 \mathrm{~V}$	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {is(p-p) }}=4.0 \mathrm{~V}$	-	0.12	-	\%
		$\mathrm{V}_{\text {CC }}=9.0 \mathrm{~V} ; \mathrm{V}_{\text {is }(p-p)}=8.0 \mathrm{~V}$	-	0.06	-	\%
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see Figure 16	[1]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-50	-	dB
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Figure 17	[2]			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	90	-	MHz
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	100	-	MHz
$\mathrm{C}_{\text {sw }}$	switch capacitance	independent pins Y	-	5	-	pF
		common pin Z	-	45		pF

[1] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
[2] Adjust input voltage $V_{\text {is }}$ to 0 dBm level at $V_{\text {os }}$ for $f_{i}=1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$. After set-up, f_{i} is increased to obtain a reading of -3 dB at $\mathrm{V}_{\text {os }}$.

Fig 15. Test circuit for measuring total harmonic distortion

a. Isolation (OFF-state)

b. Test circuit

$$
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega .
$$

Fig 16. Isolation (OFF-state) as a function of frequency

a. Typical -3 dB frequency response

b. Test circuit

$$
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega .
$$

Fig 17. -3 dB frequency response

14. Package outline

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT101-1	051G02	MO-015	SC-509-24	\square (+)	$\begin{aligned} & 99-12-27 \\ & 03-02-13 \end{aligned}$

Fig 18. Package outline SOT101-1 (DIP24)

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & \hline 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	8°
inches	0.1	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-90-12-27$
SOT137-1	075 E 05	MS-013			$02-19$	

Fig 19. Package outline SOT137-1 (SO24)
74HC_HCT4067

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	θ
mm	2	0.21	1.80	0.25	0.38	0.20	8.4	5.4	0.6	7.9	1.25	1.03	0.9					
	0.05	1.65	0.25	0.25	0.09	8.0	5.2	0.65	7.6			0.7	0.13		0.8	8°		
0.4	0°																	

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT340-1		MO-150		\square ¢	$\begin{aligned} & 99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 20. Package outline SOT340-1 (SSOP24)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & \hline 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	8° 0

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT355-1		MO-153			$-(\$)$	$-99-12-27$ $03-02-19$

Fig 21. Package outline SOT355-1 (TSSOP24)
74HC_HCT4067

