imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8-stage shift-and-store bus register Rev. 7 — 10 February 2016

General description 1.

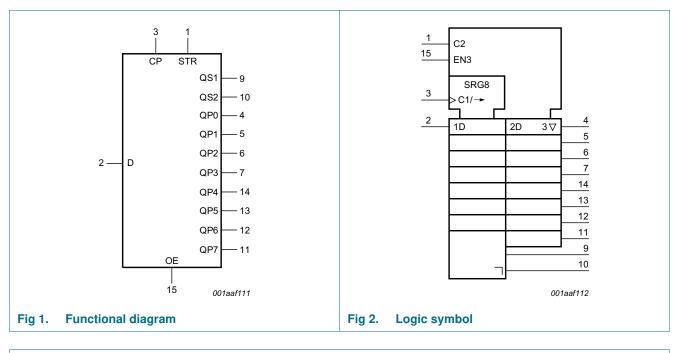
The 74HC4094; 74HCT4094 is an 8-bit serial-in/serial or parallel-out shift register with a storage register and 3-state outputs. Both the shift and storage register have separate clocks. The device features a serial input (D) and two serial outputs (QS1 and QS2) to enable cascading. Data is shifted on the LOW-to-HIGH transitions of the CP input. Data is available at QS1 on the LOW-to-HIGH transitions of the CP input to allow cascading when clock edges are fast. The same data is available at QS2 on the next HIGH-to-LOW transition of the CP input to allow cascading when clock edges are slow. The data in the shift register is transferred to the storage register when the STR input is HIGH. Data in the storage register appears at the outputs whenever the output enable input (OE) is HIGH. A LOW on OE causes the outputs to assume a high-impedance OFF-state. Operation of the OE input does not affect the state of the registers. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

Features and benefits 2.

- Complies with JEDEC standard JESD7A
- Input levels:
 - For 74HC4094: CMOS level
 - For 74HCT4094: TTL level
- Low-power dissipation
- ESD protection:
 - HBM JESD22-A114F exceeds 2 000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C

Applications 3.

- Serial-to-parallel data conversion
- Remote control holding register


8-stage shift-and-store bus register

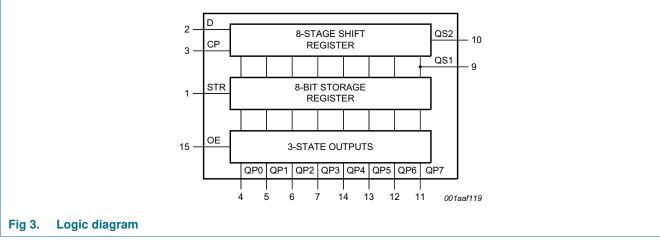
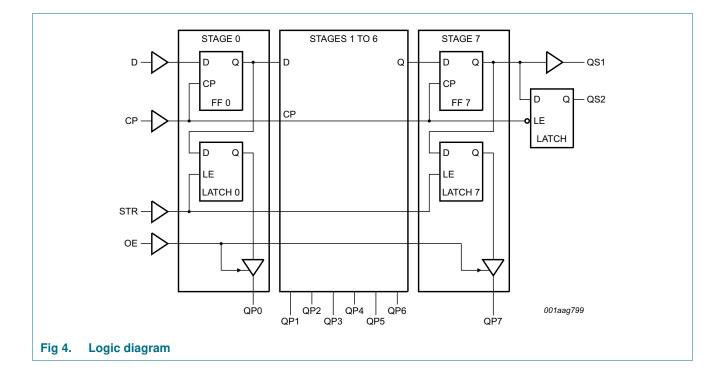

4. Ordering information

Table 1.	Ordering	information
	oracing	

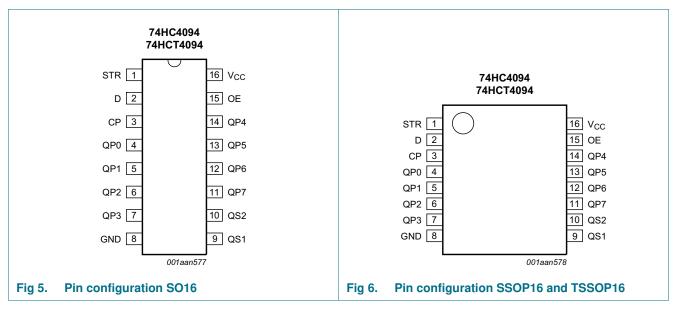
Type number	Package										
	Temperature range	Name	Description plastic small outline package; 16 leads; body width 3.9 mm 16 plastic shrink small outline package; 16 leads; body width 5.3 mm								
74HC4094D	–40 °C to +125 °C	SO16		SOT109-1							
74HCT4094D			3.9 mm								
74HC4094DB	–40 °C to +125 °C	SSOP16		SOT338-1							
74HCT4094DB	-		body width 5.3 mm								
74HC4094PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1							

5. Functional diagram



74HC_HCT4094

All information provided in this document is subject to legal disclaimers


8-stage shift-and-store bus register

8-stage shift-and-store bus register

6. Pinning information

6.1 Pinning

6.2 Pin description

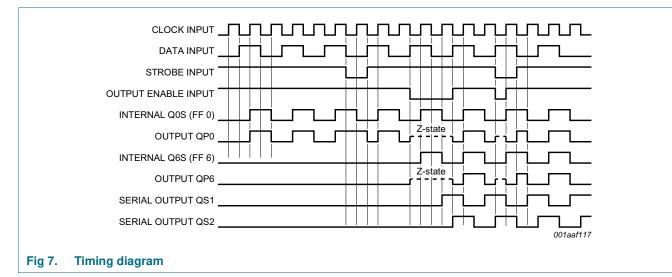
Table 2.Pin description

Symbol	Pin	Description
STR	1	strobe input
D	2	data input
СР	3	clock input
QP0 to QP7	4, 5, 6, 7, 14, 13, 12, 11	parallel output
V _{SS}	8	ground supply voltage
QS1, QS2	9, 10	serial output
OE	15	output enable input
V _{DD}	16	supply voltage

7. Functional description

Table 3.	Function tab	le ^[1]					
Inputs				Parallel o	outputs	Serial out	tputs
СР	OE	STR	D	QP0	QPn	QS1	QS2
↑	L	X	Х	Z	Z	Q6S	NC
\downarrow	L	X	Х	Z	Z	NC	Q7S
↑	Н	L	Х	NC	NC	Q6S	NC
↑	Н	Н	L	L	QPn –1	Q6S	NC
↑	Н	Н	Н	Н	QPn –1	Q6S	NC
\downarrow	Н	Н	Н	NC	NC	NC	Q7S

[1] At the positive clock edge, the information in the 7th register stage is transferred to the 8th register stage and the QSn outputs.


H = HIGH voltage level; L = LOW voltage level; X = don't care;

 \uparrow = positive-going transition; \downarrow = negative-going transition;

Z = HIGH-impedance OFF-state; NC = no change;

 $\ensuremath{\mathsf{Q6S}}$ = the data in register stage 6 before the LOW to HIGH clock transition;

Q7S = the data in register stage 7 before the HIGH to LOW clock transition.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7	V
l _{IK}	input clamping current	$V_{I} < -0.5$ V or $V_{I} > V_{CC} + 0.5$ V		-	±20	mA
l _{ок}	output clamping current	$V_{\rm O}$ < -0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V		-	±20	mA
lo	output current	$V_{\rm O} = -0.5 \text{ V} \text{ to} (V_{\rm CC} + 0.5 \text{ V})$		-	±25	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-	-50	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	SO16, SSOP16 and TSSOP16 packages	[1]	-	500	mW

For SO16: P_{tot} derates linearly with 8 mW/K above 70 °C.
 For SSOP16 and TSSOP16 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	7	4HC409	4	74	4HCT409	94	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Мах	
74HC40	94					1	1	1		
VIH	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = 20 \ \mu A; V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
lı	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
l _{oz}	OFF-state output current		-	-	±0.5	-	±5.0	-	±10.0	μA
l _{cc}	supply current		-	-	8.0	-	80	-	160	μA
CI	input capacitance		-	3.5	-					pF
74HCT4	094									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{ОН}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA	-	0.15	0.26	-	0.33	-	0.4	V

All information provided in this document is subject to legal disclaimers.

8-stage shift-and-store bus register

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
lı	input leakage current		-	-	±0.1	-	±1.0	-	±1.0	μA
I _{OZ}	OFF-state output current		-	-	±0.5	-	±5.0	-	±10	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	8.0	-	80	-	160	μA
ΔI _{CC}	additional supply current	$\label{eq:VI} \begin{array}{l} V_I = V_{CC} - 2.1 \ V; \\ \text{other inputs at } V_{CC} \ \text{or GND}; \\ V_{CC} = 4.5 \ V \ \text{to } 5.5 \ V; \\ I_O = 0 \ A \end{array}$								
		per input pin; STR input	-	100	360	-	450	-	490	μA
		per input pin; OE input	-	150	540	-	675	-	735	μA
		per input pin; CP input	-	150	540	-	675	-	735	μA
		per input pin; D input	-	40	144	-	180	-	196	μA
Cı	input capacitance		-	3.5	-					pF

8-stage shift-and-store bus register

11. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see <u>Figure 12</u>.

Symbol	Parameter	Conditions		25 °C		–40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Мах	Min	Мах	
74HC40	94					1			1	
t _{pd}	propagation	CP to QS1; see Figure 8	1							
	delay	V _{CC} = 2.0 V	-	50	150	-	190	-	225	ns
		V _{CC} = 4.5 V	-	18	30	-	38	-	45	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	33	-	38	ns
		CP to QS2; see Figure 8	1							
		V _{CC} = 2.0 V	-	44	135	-	170	-	205	ns
		V _{CC} = 4.5 V	-	16	27	-	34	-	41	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	13	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	13	23	-	29	-	35	ns
		CP to QPn; see Figure 8	1							
		V _{CC} = 2.0 V	-	63	195	-	245	-	295	ns
		V _{CC} = 4.5 V	-	23	39	-	49	-	59	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	20	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	18	33	-	42	-	50	ns
		STR to QPn; see Figure 9	1							
		V _{CC} = 2.0 V	-	58	180	-	225	-	270	ns
		V _{CC} = 4.5 V	-	21	36	-	45	-	54	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	18	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	17	31	-	38	-	46	ns
t _{en}	enable time	OE to QPn; see Figure 11	1							
		V _{CC} = 2.0 V	-	55	175	-	220	-	265	ns
		V _{CC} = 4.5 V	-	20	35	-	44	-	53	ns
		V _{CC} = 6.0 V	-	16	30	-	37	-	45	ns
t _{dis}	disable time	OE to QPn; see Figure 11	1							
		V _{CC} = 2.0 V	-	41	125	-	155	-	190	ns
		V _{CC} = 4.5 V	-	15	25	-	31	-	38	ns
		V _{CC} = 6.0 V	-	12	21	-	26	-	32	ns
t _t	transition time	QPn and QSn; see [4] Figure 8	l							
		V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns

8-stage shift-and-store bus register

Table 7. Dynamic characteristics ... continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 12.

Symbol	Parameter	Conditions		25 °C		–40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Мах	
t _W	pulse width	CP HIGH or LOW; see Figure 8								
		V _{CC} = 2.0 V	80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	5	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	4	-	17	-	20	-	ns
		STR HIGH; see Figure 9								
		V _{CC} = 2.0 V	80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	5	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	4	-	17	-	20	-	ns
t _{su}	set-up time	D to CP; see Figure 10								
		V _{CC} = 2.0 V	50	14	-	65	-	75	-	ns
		V _{CC} = 4.5 V	10	5	-	13	-	15	-	ns
		V _{CC} = 6.0 V	9	4	-	11	-	13	-	ns
		CP to STR; see Figure 9								
		V _{CC} = 2.0 V	100	28	-	125	-	150	-	ns
		V _{CC} = 4.5 V	20	10	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	8	-	21	-	26	-	ns
t _h	hold time	D to CP; see Figure 10								
		V _{CC} = 2.0 V	3	-6	-	3	-	3	-	ns
		V _{CC} = 4.5 V	3	-2	-	3	-	3	-	ns
		V _{CC} = 6.0 V	3	-2	-	3	-	3	-	ns
		CP to STR; see Figure 9								
		V _{CC} = 2.0 V	0	-14	-	0	-	0	-	ns
		$V_{CC} = 4.5 V$	0	-5	-	0	-	0	-	ns
		V _{CC} = 6.0 V	0	-4	-	0	-	0	-	ns
f _{max}	maximum	CP; see Figure 8								
	frequency	V _{CC} = 2.0 V	6.0	28	-	4.8	-	4.0	-	MHz
		V _{CC} = 4.5 V	30	87	-	24	-	20	-	MHz
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	95	-	-	-	-	-	MHz
		V _{CC} = 6.0 V	35	103	-	28	-	24	-	MHz
C _{PD}	power dissipation capacitance	$\begin{array}{ll} C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz}; & [5] \\ V_I = GND \text{ to } V_{CC} \end{array}$	-	83	-	-	-	-	-	pF

8-stage shift-and-store bus register

Symbol	Parameter	Conditions			25 °C		_40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	-
74HCT4	094							1			
t _{pd}	propagation	CP to QS1; see Figure 8	<u>[1]</u>								
	delay	V _{CC} = 4.5 V		-	23	39	-	49	-	59	ns
		V _{CC} = 5 V; C _L = 15 pF		-	19	-	-	-	-	-	ns
		CP to QS2; see Figure 8	<u>[1]</u>								
		V _{CC} = 4.5 V		-	21	36	-	45	-	54	ns
		$V_{CC} = 5 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	18	-	-	-	-	-	ns
		CP to QPn; see Figure 8	<u>[1]</u>								
		V _{CC} = 4.5 V		-	25	43	-	54	-	65	ns
		$V_{CC} = 5 \text{ V}; C_{L} = 15 \text{ pF}$		-	21	-	-	-	-	-	ns
		STR to QPn; see Figure 9	<u>[1]</u>								
		V _{CC} = 4.5 V		-	22	39	-	49	-	59	ns
		V _{CC} = 5 V; C _L = 15 pF		-	19	-	-	-	-	-	ns
t _{en}	enable time	OE to QPn; see Figure 11	[2]								
		V _{CC} = 4.5 V		-	20	35	-	44	-	53	ns
t _{dis}	disable time	OE to QPn; see Figure 11	[3]								
		V _{CC} = 4.5 V		-	21	35	-	44	-	53	ns
t _t	transition time	QPn and QSn; see Figure 8	<u>[4]</u>								_
		V _{CC} = 4.5 V		-	7	15	-	19	-	22	ns
tw	pulse width	CP HIGH or LOW; see Figure 8									
		V _{CC} = 4.5 V		16	7	-	20	-	24	-	ns
		STR HIGH; see Figure 9									
		V _{CC} = 4.5 V		16	5	-	20	-	24	-	ns
t _{su}	set-up time	Dn to CP; see Figure 10									
		V _{CC} = 4.5 V		10	4	-	13	-	15	-	ns
		CP to STR; see Figure 9									
		V _{CC} = 4.5 V		20	9	-	25	-	30	-	ns
t _h	hold time	Dn to CP; see Figure 10									
		V _{CC} = 4.5 V		4	0	-	4	-	4	-	ns
		CP to STR; see Figure 9									
		V _{CC} = 4.5 V		0	-4	-	0	-	0	-	ns
f _{max}	maximum	CP; see Figure 8									1
	frequency	V _{CC} = 4.5 V		30	80	-	24	-	20	-	MHz
		V _{CC} = 5 V; C _L = 15 pF		-	86	-	-	-	-	-	MHz

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit see Figure 12.

Table 7. Dynamic characteristics ... continued

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit see Figure 12.

Symbol	Parameter	Conditions		25 °C –40 °C to +85 °C		–40 °C to +125 °C		Unit		
			Min	Тур	Max	Min	Max	Min	Мах	
C _{PD}	power dissipation capacitance	$\label{eq:classical} \begin{array}{ll} C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz}; & [5] \\ V_I = \text{GND to } V_{CC} - 1.5 \text{ V} \end{array}$	-	92	-	-	-	-	-	pF

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

[2] t_{en} is the same as t_{PZH} and t_{PZL} .

[3] t_{dis} is the same as t_{PLZ} and t_{PHZ} .

[4] t_t is the same as t_{THL} and t_{TLH} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o) = sum of outputs.$

12. Waveforms

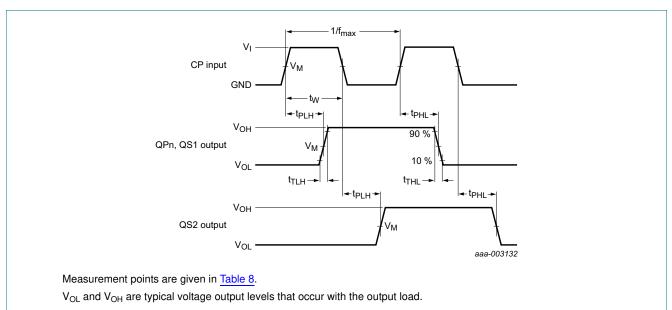
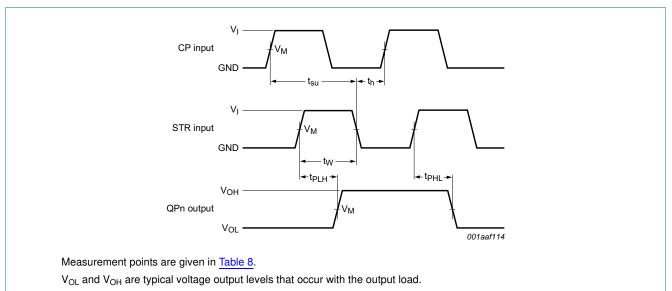
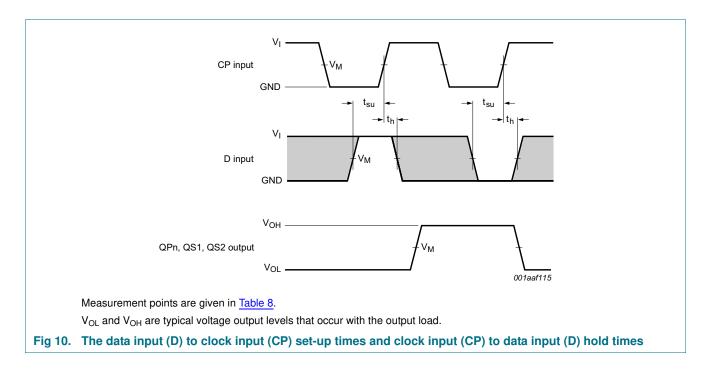
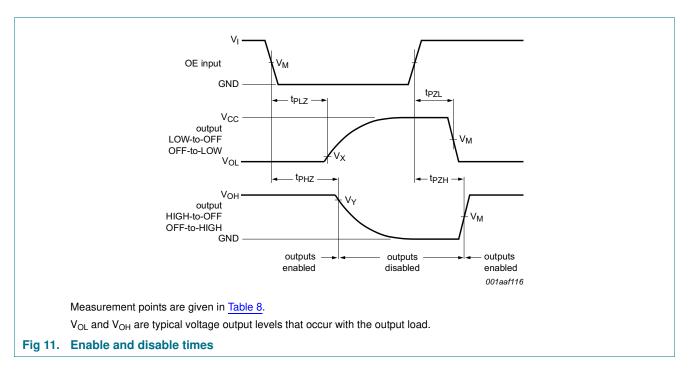




Fig 8. Propagation delay input (CP) to output (QPn, QS1, QS2), output transition time, clock input (CP) pulse width and the maximum frequency (CP)


8-stage shift-and-store bus register

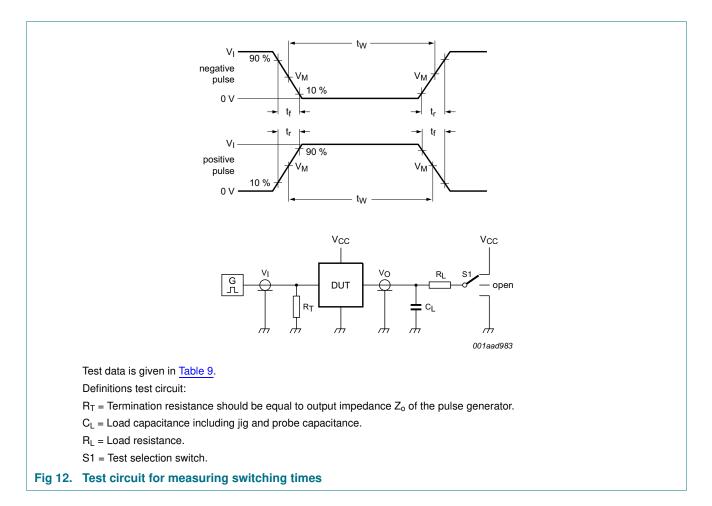

8-stage shift-and-store bus register

Table 8. Measurement points

Туре	Input	Output		
	V _M	V _M	V _X	V _Y
74HC4094	0.5V _{CC}	0.5V _{CC}	0.1V _{OH}	0.9V _{OH}
74HCT4094	1.3 V	1.3 V	0.1V _{OH}	0.9V _{OH}

8-stage shift-and-store bus register

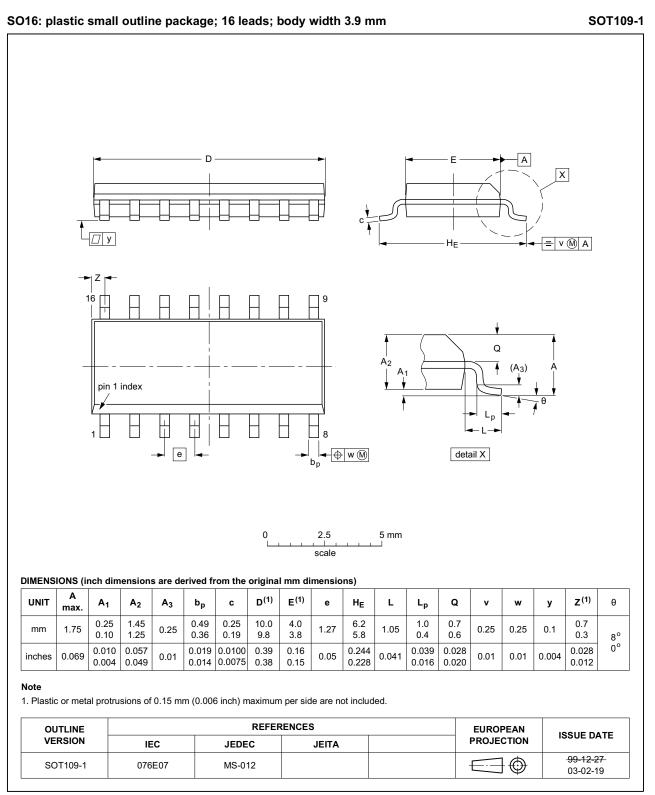


Table 9. Test data

Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74HC4094	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74HCT4094	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

8-stage shift-and-store bus register

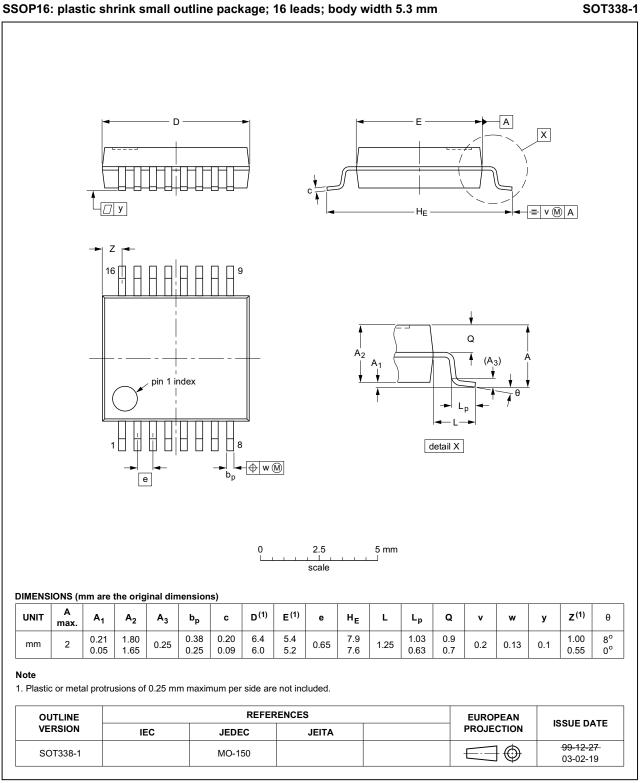

13. Package outline

Fig 13. Package outline SOT109-1 (SO16)

74HC_HCT4094

8-stage shift-and-store bus register

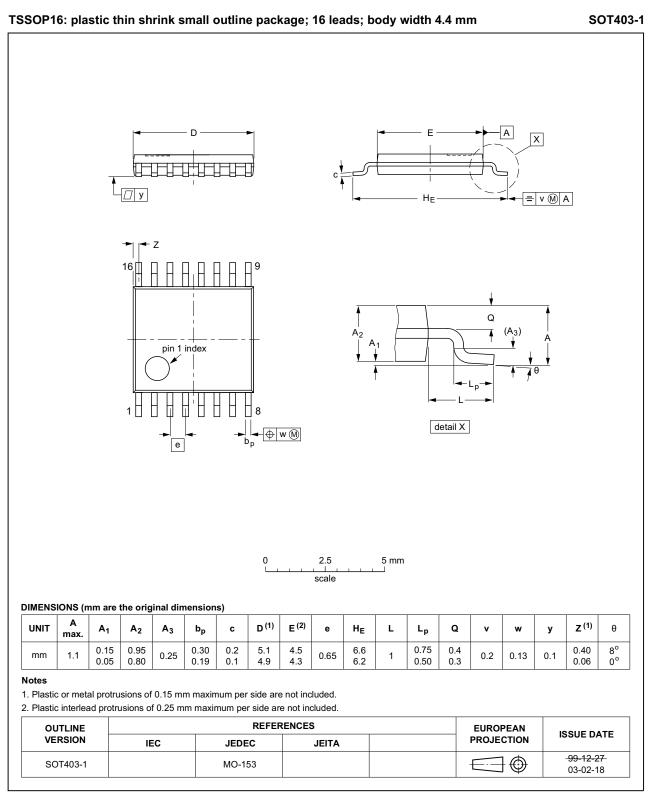


Fig 14. Package outline SOT338-1 (SSOP16)

74HC_HCT4094

All information provided in this document is subject to legal disclaimers.

8-stage shift-and-store bus register

Fig 15. Package outline SOT403-1 (TSSOP16)

74HC_HCT4094

All information provided in this document is subject to legal disclaimers

Product data sheet

14. Abbreviations

Table 10. Abbreviations			
Acronym	Description		
CMOS	Complementary Metal Oxide Semiconductor		
DUT	Device Under Test		
ESD	ElectroStatic Discharge		
HBM	Human Body Model		
MM	Machine Model		
TTL	Transistor-Transistor Logic		

15. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4094 v.7	20160210	Product data sheet	-	74HC_HCT4094 v.6
Modifications:	Type numbers 74HC4094N and 74HCT4094N (SOT38-4) removed.			
74HC_HCT4094 v.6	20121231	Product data sheet	-	74HC_HCT4094 v.5
Modifications:	General description updated.			
74HC_HCT4094 v.5	20120628	Product data sheet	-	74HC_HCT4094 v.4
Modifications:	V _X and V _Y measurement points added to Table 8.			
74HC_HCT4094 v.4	20111219	Product data sheet	-	74HC_HCT4094 v.3
Modifications:	Legal pages updated.			
74HC_HCT4094 v.3	20110214	Product data sheet	-	74HC_HCT4094_CNV v.2
74HC_HCT4094_CNV v.2	19970901	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 **Definitions**

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use - Nexperia products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

20 of 22

8-stage shift-and-store bus register

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

17. Contact information

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74HC_HCT4094

8-stage shift-and-store bus register

18. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 5
8	Limiting values 6
9	Recommended operating conditions 6
10	Static characteristics 7
11	Dynamic characteristics 9
12	Waveforms 12
13	Package outline 16
14	Abbreviations 19
15	Revision history 19
16	Legal information
16.1	Data sheet status 20
16.2	Definitions 20
16.3	Disclaimers
16.4	Trademarks 21
17	Contact information 21
18	Contents 22