: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4316 Quad bilateral switches

File under Integrated Circuits, IC06

FEATURES

- Low "ON" resistance:
160Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
120Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
80Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation: to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Output capability: non-standard
- ICC category: MSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 4316$ are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4316 have four independent analog switches. Each switch has two input/output terminals ($\mathrm{nY}, \mathrm{nZ} \mathrm{)} \mathrm{and} \mathrm{an} \mathrm{active} \mathrm{HIGH} \mathrm{select} \mathrm{input} \mathrm{(} \mathrm{nS} \mathrm{)}$. enable input ($\overline{\mathrm{E}}$) is HIGH, all four analog switches are turned off.

Current through a switch will not cause additional V_{CC} current provided the voltage at the terminals of the switch is maintained within the supply voltage range;
$\mathrm{V}_{\mathrm{CC}} \gg\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}}\right) \gg \mathrm{V}_{\mathrm{EE}}$. Inputs nY and nZ are electrically equivalent terminals.
V_{CC} and GND are the supply voltage pins for the digital control inputs ($\overline{\mathrm{E}}$ and nS). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT .
The analog inputs/outputs (nY and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit.
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$ may not exceed 10.0 V .
See the " 4016 " for the version without logic level translation.

QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$t_{\text {PZH }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{OS} nS to V_{Os}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 19 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{OS} nS to V_{OS}		$\begin{aligned} & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 24 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time \bar{E} to V_{OS} nS to V_{OS}		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 21 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
C_{1}	input capacitance		3.5	3.5	pF
CPD	power dissipation capacitance per switch	notes 1 and 2	13	14	pF
C_{S}	max. switch capacitance		5	5	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}^{2} \times f_{o}\right\}
$$

where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}=$ sum of outputs
$C_{L}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,4,10,13$	1 Z to 4 Z	independent inputs/outputs
$2,3,11,12$	1 Y to 4 Y	independent inputs/outputs
7	$\overline{\mathrm{E}}$	enable input (active LOW)
8	GND	ground (0 V)
9	$\mathrm{~V}_{\mathrm{EE}}$	negative supply voltage
$15,5,6,14$	1 S to 4 S	select inputs (active HIGH)
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

(a)

(b)

Fig. 3 IEC logic symbol.

Quad bilateral switches

FUNCTION TABLE

INPUTS		SWITCH
$\overline{\mathrm{E}}$	nS	
L	L	off
L	H	on
H	X	off

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care

APPLICATIONS

- Signal gating
- Modulation
- Demodulation
- Chopper

Fig. 4 Functional diagram.

Fig. 5 Schematic diagram (one switch).

Quad bilateral switches

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
$\mathrm{V}_{\text {CC }}$	DC supply voltage	-0.5	+11.0	V	
$\pm{ }_{\text {IK }}$	DC digital input diode current		20	mA	for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {SK }}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {S }}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {EE }}$	DC V $\mathrm{EEE}^{\text {current }}$		20	mA	
$\begin{aligned} & \pm \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{GND}} \end{aligned}$	DC V ${ }_{\text {CC }}$ or GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ $74 \mathrm{HC} / \mathrm{HCT}$ above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
P_{S}	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing $V_{c c}$ current out of terminal Z, when switch current flows in terminals Y_{n}, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminals Z , no V_{cc} current will flow out of terminal Y_{n}. In this case there is no limit for the voltage drop across the switch, but the voltages at Y_{n} and Z may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
$\mathrm{V}_{\text {CC }}$	DC supply voltage V_{CC} - GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
$\mathrm{V}_{\text {CC }}$	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
V_{1}	DC input voltage range	GND		V_{CC}	GND		V_{CC}	V	
V_{S}	DC switch voltage range	V_{EE}		V_{CC}	V_{EE}		V_{CC}	V	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	e DC and A
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CS
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		6.0	$\begin{aligned} & 1000 \\ & 500 \\ & 400 \\ & 250 \end{aligned}$		6.0	500	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$

Quad bilateral switches

Fig. 6 Guaranteed operating area as a function of the supply voltages for 74 HC 4316 .

Fig. 7 Guaranteed operating area as a function of the supply voltages for 74HCT4316.

DC CHARACTERISTICS FOR 74HC/HCT

For $74 \mathrm{HC}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V
For 74HCT: $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS				
		74HC/HCT								V_{Cc} (V)	V_{EE} (V)	$\begin{gathered} \mathbf{I}_{\mathbf{S}} \\ (\mu \mathbf{A}) \end{gathered}$	$\mathrm{V}_{\text {is }}$	V ${ }_{\text {I }}$
		+25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
R_{ON}	ON resistance (peak)		$\begin{aligned} & 160 \\ & 120 \\ & 85 \end{aligned}$	$\begin{aligned} & 320 \\ & 240 \\ & 170 \end{aligned}$		$\begin{aligned} & - \\ & 400 \\ & 300 \\ & 215 \end{aligned}$		$\begin{aligned} & - \\ & 480 \\ & 360 \\ & 255 \end{aligned}$	$\begin{array}{\|l} \hline \Omega \\ \Omega \\ \Omega \\ \Omega \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	V_{CC} to $V_{E E}$	V_{IH} or VIL
RON	ON resistance (rail)		$\begin{aligned} & \hline 160 \\ & 80 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \\ & 120 \end{aligned}$		$\begin{aligned} & - \\ & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{aligned} & - \\ & 240 \\ & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{EE}	V_{IH} or $\mathrm{V}_{\text {IL }}$
RON	ON resistance (rail)		$\begin{array}{\|l\|} \hline 170 \\ 90 \\ 80 \\ 65 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 160 \\ & 135 \end{aligned}$		$\begin{aligned} & - \\ & 225 \\ & 200 \\ & 170 \end{aligned}$		$\begin{aligned} & 270 \\ & 240 \\ & 205 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{CC}	V_{IH} or V_{IL}
$\Delta \mathrm{R}_{\mathrm{ON}}$	maximum $\triangle \mathrm{ON}$ resistance between any two channels		$\begin{aligned} & - \\ & 16 \\ & 9 \\ & 6 \end{aligned}$						$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$		$V_{C C}$ to $V_{E E}$	V_{H} or $V_{I L}$

Notes

1. At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V the analog switch ON -resistance becomes extremely non-linear. Therefore it is recommended that these devices are used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig.8.

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HC								V_{Cc} (V)	$V_{E E}$ (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	$\begin{aligned} & 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.3 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		V	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
V_{IL}	LOW level input voltage		$\begin{aligned} & \hline 0.8 \\ & 2.1 \\ & 2.8 \\ & 4.3 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 1.35 \\ & 1.8 \\ & 2.7 \end{aligned}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$	V	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$			
± 1	input leakage current			$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mid= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.10) } \\ & \hline \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mathrm{=} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.11) } \end{aligned}$
I_{CC}	quiescent supply current			$\begin{aligned} & \hline 8.0 \\ & 16.0 \end{aligned}$		$\begin{aligned} & 80.0 \\ & 160.0 \end{aligned}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$

AC CHARACTERISTICS FOR 74HC

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
tPHL/ ${ }_{\text {PLH }}$	propagation delay $V_{\text {is }} \text { to } V_{\text {os }}$		$\begin{array}{\|l\|} \hline 17 \\ 6 \\ 5 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \\ & 8 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 75 \\ 15 \\ 13 \\ 10 \\ \hline \end{array}$		$\begin{array}{\|l} 90 \\ 18 \\ 15 \\ 12 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
tpzH/ $\mathrm{t}_{\text {PZL }}$	$\begin{array}{\|l} \mid \text { turn "ON" time } \\ \overline{\mathrm{E}} \text { to } \mathrm{V}_{\text {os }} \end{array}$		$\begin{aligned} & \hline 61 \\ & 22 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	$\begin{aligned} & 205 \\ & 41 \\ & 35 \\ & 37 \end{aligned}$		$\begin{array}{\|l\|} \hline 255 \\ 51 \\ 43 \\ 47 \end{array}$		$\begin{aligned} & \hline 310 \\ & 62 \\ & 53 \\ & 56 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { (see Figs } 19,20 \text { and } \\ \text { 21) } \\ \hline \end{array}$
tpzH/ $/$ tpl	$\begin{array}{\|l} \hline \text { turn "ON" time } \\ \mathrm{nS} \text { to } \mathrm{V}_{\text {os }} \end{array}$		$\begin{array}{\|l} \hline 52 \\ 19 \\ 15 \\ 17 \\ \hline \end{array}$	175 35 30 34		$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \\ 43 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \\ 51 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { (see Figs } 19,20 \text { and } \\ \text { 21) } \\ \hline \end{array}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	$\begin{array}{\|l} \hline \text { turn "OFF" } \\ \text { time } \\ \overline{\mathrm{E}} \text { to } \mathrm{V}_{\text {os }} \end{array}$		$\begin{array}{\|l} \hline 63 \\ 23 \\ 18 \\ 21 \\ \hline \end{array}$	220 44 37 39		$\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ 49 \end{array}$		$\begin{array}{\|l\|} \hline 330 \\ 66 \\ 56 \\ 59 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { (see Figs 19, } 20 \text { and } \\ \text { 21) } \\ \hline \end{array}$
tphz/ tplz	$\begin{aligned} & \hline \text { turn "OFF" } \\ & \text { time } \\ & \text { nS to } V_{\text {os }} \end{aligned}$		$\begin{array}{\|l\|} \hline 55 \\ 20 \\ 16 \\ 18 \end{array}$	$\begin{aligned} & 175 \\ & 35 \\ & 30 \\ & 36 \end{aligned}$		$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \\ 45 \end{array}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \\ 54 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19,20 \text { and } \\ & \text { 21) } \\ & \hline \end{aligned}$

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground $=0$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HCT								V_{Cc} (V)	V_{EE} (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \\ & \hline \end{aligned}$			
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$			
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	0	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $V_{\text {IL }}$	$\begin{array}{\|l\|} \hline V_{S} \mid= \\ V_{C C}-V_{E E} \\ \text { (see Fig.10) } \\ \hline \end{array}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mid= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.11) } \end{aligned}$
I_{CC}	quiescent supply current			$\begin{array}{\|l\|} \hline 8.0 \\ 16.0 \end{array}$		$\begin{array}{\|l} 80.0 \\ 160.0 \end{array}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & -5.0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$	0	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \mathrm{~V} \end{aligned}$	other inputs at $V_{C C}$ or GND

Note

1. The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given here.

To determine $\Delta \mathrm{I}_{\mathrm{Cc}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nS	0.50
$\overline{\mathrm{E}}$	0.50

Fig. 8 Test circuit for measuring R_{ON}.

Fig. 9 Typical R_{ON} as a function of input voltage $\mathrm{V}_{\text {is }}$ for $\mathrm{V}_{\text {is }}=0$ to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$.

Fig. 10 Test circuit for measuring OFF-state current.

Fig. 11 Test circuit for measuring ON-state current.

AC CHARACTERISTICS FOR 74HCT
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\text {C }}$)							UNIT	TEST CONDITIONS		
		74HCT								V_{Cc} (V)	$\begin{aligned} & V_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	OTHER
		+25			-40 TO +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $V_{\text {is }} \text { to } V_{o s}$		$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 8 \end{aligned}$		$\begin{aligned} & 15 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 18 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 18 \text {) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{os}		$\begin{aligned} & 22 \\ & 21 \end{aligned}$	$\begin{aligned} & 44 \\ & 42 \end{aligned}$		$\begin{array}{\|l\|} \hline 55 \\ 53 \\ \hline \end{array}$		$\begin{aligned} & 66 \\ & 63 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 4.5 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{os}		$\begin{aligned} & 28 \\ & 21 \end{aligned}$	$\begin{aligned} & 56 \\ & 42 \end{aligned}$		$\begin{aligned} & 70 \\ & 53 \end{aligned}$		$\begin{aligned} & 84 \\ & 63 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ -4.5 \end{array}$	$\begin{aligned} & \text { (see Figs 19, } \\ & 20 \text { and } 21 \text {) } \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	turn "ON" time nS to $\mathrm{V}_{\text {os }}$		$\begin{array}{\|l\|} \hline 20 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 34 \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 53 \\ 43 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 60 \\ 51 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 4.5 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
$\mathrm{t}_{\text {PZL }}$	turn "ON" time nS to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 25 \\ & 17 \end{aligned}$	$\begin{aligned} & 50 \\ & 34 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 63 \\ 43 \end{array}$		$\begin{aligned} & 75 \\ & 51 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 4.5 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \text { (see Figs 19, } \\ & 20 \text { and } 21 \text {) } \end{aligned}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 50 \\ & 46 \end{aligned}$		$\begin{aligned} & 63 \\ & 58 \end{aligned}$		$\begin{aligned} & 75 \\ & 69 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19, \\ & 20 \text { and } 21 \text {) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time nS to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & 44 \\ & 40 \end{aligned}$		$\begin{aligned} & 55 \\ & 50 \end{aligned}$		$\begin{aligned} & 66 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19, \\ & 20 \text { and } 21 \text {) } \end{aligned}$

Quad bilateral switches

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	typ.	UNIT	V_{Cc} (V)	V_{EE} (V)	$V_{i s(p-p)}$ (V)	CONDITIONS
	sine-wave distortion $\mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & 0.80 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	sine-wave distortion $\mathrm{f}=10 \mathrm{kHz}$	$\begin{aligned} & 2.40 \\ & 1.20 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{array}{\|l\|} \hline-50 \\ -50 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Figs } 12 \text { and } 15 \text {) } \end{aligned}$
	crosstalk between any two switches	$\begin{array}{\|l\|} \hline-60 \\ -60 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{\|l} \hline 2.25 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} ;(\text { see Fig. } 16 \text {) } \end{aligned}$
$\mathrm{V}_{(p-p)}$	crosstalk voltage between control and any switch (peak-to-peak value)	$\begin{array}{\|l\|} \hline 110 \\ 220 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$		$\mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \underline{\Omega} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ $\mathrm{f}=1 \mathrm{MHz}$ ($\overline{\mathrm{E}}$ or nS , square-wave between V_{CC} and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$) (see Fig.17)
$\mathrm{f}_{\text {max }}$	minimum frequency response $(-3 \mathrm{~dB})$	$\begin{array}{\|l\|} \hline 150 \\ 160 \end{array}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|l} -2.25 \\ -4.5 \end{array}$	note 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 13 and 14)
C_{S}	maximum switch capacitance	5	pF				

Notes

1. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
2. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {OS }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

General note

$\mathrm{V}_{\text {is }}$ is the input voltage at an $n \mathrm{Y}$ or nZ terminal, whichever is assigned as an input.
$\mathrm{V}_{\text {os }}$ is the output voltage at an nY or nZ terminal, whichever is assigned as an output.

> Test conditions:
> $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$R_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 12 Typical switch "OFF" signal feed-through as a function of frequency.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 13 Typical frequency response.

Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

Fig. 16 Test circuit for measuring crosstalk between any two switches.
(a) channel ON condition; (b) channel OFF condition.

The crosstalk is defined as follows (oscilloscope output):

Fig. 17 Test circuit for measuring crosstalk between control and any switch.

AC WAVEFORMS

Fig. 18 Waveforms showing the input ($\mathrm{V}_{\text {is }}$) to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays.

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{l}}=\mathrm{GND}$ to V_{CC}. $\mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 19 Waveforms showing the turn-ON and turn-OFF times.

Quad bilateral switches

TEST CIRCUIT AND WAVEFORMS

Fig. 20 Test circuit for measuring AC performance.

Fig. 21 Input pulse definitions.

Conditions

TEST	SWITCH	$\mathrm{V}_{\text {is }}$
$\mathrm{t}_{\text {PZH }}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	V_{EE}
$\mathrm{t}_{\mathrm{PHZ}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PLZ}}$	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

Definitions for Figs 20 and 21:
$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T}=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint to t_{r}, t_{f} with 50% duty factor.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

