## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

## DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4351 8-channel analog multiplexer/demultiplexer with latch

File under Integrated Circuits, IC06

## 8-channel analog

multiplexer/demultiplexer with latch

## 74HC/HCT4351

## FEATURES

- Wide analog input voltage range: $\pm 5 \mathrm{~V}$
- Low "ON" resistance:
$80 \Omega$ (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
$70 \Omega$ (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
$60 \Omega$ (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation: to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Address latches provided
- Output capability: non-standard
- I ${ }_{\text {CC }}$ category: MSI


## GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 4351$ are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 4351$ are 8-channel analog multiplexers/demultiplexers with three select inputs ( $\mathrm{S}_{0}$ to $S_{2}$ ), two enable inputs ( $\bar{E}_{1}$ and $E_{2}$ ), a latch enable input $(\overline{L E})$, eight independent inputs/outputs $\left(Y_{0}\right.$ to $\left.Y_{7}\right)$ and a common input/output (Z).

With $\bar{E}_{1}$ LOW and $E_{2}$ is HIGH , one of the eight switches is selected (low impedance ON-state) by $\mathrm{S}_{0}$ to $\mathrm{S}_{2}$. The data at the select inputs may be latched by using the active LOW latch enable input ( $\overline{\mathrm{LE}})$. When $\overline{\mathrm{LE}}$ is HIGH the latch is transparent. When either of the two enable inputs, $\overline{\mathrm{E}}_{1}$ (active LOW) and $\mathrm{E}_{2}$ (active HIGH), is inactive, all 8 analog switches are turned off.
$\mathrm{V}_{C C}$ and GND are the supply voltage pins for the digital control inputs ( $\mathrm{S}_{0}$ to $\mathrm{S}_{2}, \overline{\mathrm{LE}}, \overline{\mathrm{E}}_{1}$ and $\mathrm{E}_{2}$ ). The $\mathrm{V}_{\mathrm{CC}}$ to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs ( $\mathrm{Y}_{0}$ to $\mathrm{Y}_{7}$, and Z ) can swing between $\mathrm{V}_{\mathrm{CC}}$ as a positive limit and $\mathrm{V}_{\mathrm{EE}}$ as a negative limit.
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .
For operation as a digital multiplexer/demultiplexer, $\mathrm{V}_{\mathrm{EE}}$ is connected to GND (typically ground).

## QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

| SYMBOL | PARAMETER | CONDITIONS | TYPICAL |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | HC | HCT |  |
| $\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$ | turn "ON" time $\overline{\mathrm{E}}_{1}$, $\mathrm{E}_{2}$ or $\mathrm{S}_{\mathrm{n}}$ to $\mathrm{V}_{\text {os }}$ | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ | 27 | 35 | ns |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | turn "OFF" time $\overline{\mathrm{E}}_{1}$, $\mathrm{E}_{2}$ or $\mathrm{S}_{\mathrm{n}}$ to $\mathrm{V}_{\text {os }}$ |  | 21 | 23 | ns |
| $\mathrm{C}_{1}$ | input capacitance |  | 3.5 | 3.5 | pF |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance per switch | notes 1 and 2 | 25 | 25 | pF |
| $\mathrm{C}_{S}$ | max. switch capacitance independent ( Y ) common (Z) |  | $\begin{aligned} & 5 \\ & 25 \end{aligned}$ | $\begin{aligned} & 5 \\ & 25 \end{aligned}$ | $\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$ |

## Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation ( $P_{D}$ in $\mu W$ ):
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{s}}=$ max. switch capacitance in pF
$\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

## ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

## 8-channel analog multiplexer/demultiplexer with latch

## PIN DESCRIPTION

| PIN NO. | SYMBOL | NAME AND FUNCTION |
| :--- | :--- | :--- |
| 4 | Z | common |
| 3,14 | n.c. | not connected |
| 7 | $\overline{\mathrm{E}}_{1}$ | enable input (active LOW) |
| 8 | $\mathrm{E}_{2}$ | enable input (active HIGH) |
| 9 | $\mathrm{~V}_{\mathrm{EE}}$ | negative supply voltage |
| 10 | GND | ground (0 V) |
| 11 | $\overline{\mathrm{LE}}$ | latch enable input (active LOW) |
| $15,13,12$ | $\mathrm{~S}_{0}$ to $\mathrm{S}_{2}$ | select inputs |
| $17,18,19,16,1,6,2,5$ | $\mathrm{Y}_{0}$ to $\mathrm{Y}_{7}$ | independent inputs/outputs |
| 20 | $\mathrm{~V}_{\mathrm{CC}}$ | positive supply voltage |



Fig. 1 Pin configuration.


Fig. 2


Fig. 3 IEC logic symbol.

## 8-channel analog multiplexer/demultiplexer with latch

FUNCTION TABLE

| INPUTS |  |  |  |  |  | CHANNEL ON |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{1}$ | $\mathrm{E}_{2}$ | $\overline{\text { EE }}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ |  |
| H | X | X | X | X | X | none |
| X | L | X | X | X | X | none |
| L | H | H | L | L | L | $\mathrm{Y}_{0}$ |
| L | H | H | L | L | H | $\mathrm{Y}_{1}$ |
| L | H | H | L | H | L | $\mathrm{Y}_{2}$ |
| L | H | H | L | H | H | $Y_{3}$ |
| L | H | H | H | L | L | $\mathrm{Y}_{4}$ |
| L | H | H | H | L | H | $Y_{5}$ |
| L | H | H | H | H | L | $\mathrm{Y}_{6}$ |
| L | H | H | H | H | H | $\mathrm{Y}_{7}$ |
| L | H | L | X | X | X | ${ }^{(1)}$ |
| X | X | $\downarrow$ | x | x | x | (2) |

## Notes

1. Last selected channel "ON".
2. Selected channels latched.
3. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care
$\downarrow=$ HIGH-to-LOW $\overline{\text { LE }}$ transition

## APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating


Fig. 4 Functional diagram.


Fig. 5 Schematic diagram (one switch).

## 8-channel analog multiplexer/demultiplexer with latch

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ (ground $=0 \mathrm{~V}$ )

| SYMBOL | PARAMETER | MIN. | MAX. | UNIT | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | DC supply voltage | -0.5 | +11.0 | V |  |
| $\pm \mathrm{I}_{\text {IK }}$ | DC digital input diode current |  | 20 | mA | for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| $\pm \mathrm{l}_{\text {SK }}$ | DC switch diode current |  | 20 | mA | for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| $\pm \mathrm{l}_{\text {S }}$ | DC switch current |  | 25 | mA | for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| $\pm \mathrm{I}_{\text {EE }}$ | DC V $\mathrm{EEE}^{\text {current }}$ |  | 20 | mA |  |
| $\pm \mathrm{l}_{\mathrm{CC} ;} \pm \mathrm{l}_{\mathrm{GND}}$ | DC V ${ }_{\text {cc }}$ or GND current |  | 50 | mA |  |
| $\mathrm{T}_{\text {stg }}$ | storage temperature range | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{P}_{\text {tot }}$ | power dissipation per package <br> plastic DIL |  | 750 | mW | for temperature range: -40 to $+125^{\circ} \mathrm{C}$ 74HC/HCT <br> above $+70^{\circ} \mathrm{C}$ : derate linearly with $12 \mathrm{~mW} / \mathrm{K}$ |
|  | plastic mini-pack (SO) |  | 500 | mW | above $+70^{\circ} \mathrm{C}$ : derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ |
| $\mathrm{P}_{S}$ | power dissipation per switch |  | 100 | mW |  |

## Note to ratings

1. To avoid drawing $V_{C C}$ current out of terminal $Z$, when switch current flows in terminals $Y_{n}$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal $Z$, no $\mathrm{V}_{\mathrm{cc}}$ current will flow out of terminals $Y_{n}$. In this case there is no limit for the voltage drop across the switch, but the voltages at $Y_{n}$ and $Z$ may not exceed $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE}}$.

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | 74HC |  |  | 74HCT |  |  | UNIT | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | min. | typ. | max. | min. | typ. | max. |  |  |
| $\mathrm{V}_{\text {CC }}$ | DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ | 2.0 | 5.0 | 10.0 | 4.5 | 5.0 | 5.5 | V | see Figs 6 and 7 |
| $\mathrm{V}_{\text {CC }}$ | DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ | 2.0 | 5.0 | 10.0 | 2.0 | 5.0 | 10.0 | V | see Figs 6 and 7 |
| $V_{1}$ | DC input voltage range | GND |  | $\mathrm{V}_{\mathrm{CC}}$ | GND |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| $\mathrm{V}_{\mathrm{S}}$ | DC switch voltage range | $\mathrm{V}_{\mathrm{EE}}$ |  | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{EE}}$ |  | $\mathrm{V}_{\mathrm{CC}}$ | V |  |
| $\mathrm{T}_{\text {amb }}$ | operating ambient temperature range | -40 |  | +85 | -40 |  | +85 | ${ }^{\circ} \mathrm{C}$ | DC |
| $\mathrm{T}_{\text {amb }}$ | operating ambient temperature range | -40 |  | +125 | -40 |  | +125 | ${ }^{\circ} \mathrm{C}$ | CHARACTERISTICS |
| $\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | input rise and fall times |  | 6.0 | $\begin{aligned} & 1000 \\ & 500 \\ & 400 \\ & 250 \end{aligned}$ |  | 6.0 | 500 | ns | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$ |

## 8-channel analog multiplexer/demultiplexer with latch

## 74HC/HCT4351



Fig. 6 Guaranteed operating area as a function of the supply voltages for 74 HC 4351 .


Fig. 7 Guaranteed operating area as a function of the supply voltages for 74 HCT 4351 .

DC CHARACTERISTICS FOR 74HC/HCT
For $74 \mathrm{HC}: \quad \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V
For $74 \mathrm{HCT}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V

| SYMBOL | PARAMETER | $\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HC/HCT |  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{cc}}$ <br> (V) | $\mathrm{V}_{\mathrm{EE}}$ <br> (V) | $\begin{gathered} \mathbf{I}_{\mathbf{S}} \\ (\mu \mathrm{A}) \end{gathered}$ | $\mathrm{V}_{\text {is }}$ | $\mathrm{V}_{1}$ |
|  |  | +25 |  |  | -40 to +85 |  | $\begin{gathered} -40 \text { to } \\ +125 \end{gathered}$ |  |  |  |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |  |  |  |
| $\mathrm{R}_{\mathrm{ON}}$ | ON resistance (rail) |  | $\begin{aligned} & - \\ & 100 \\ & 90 \\ & 70 \end{aligned}$ | $\begin{aligned} & 180 \\ & 160 \\ & 130 \end{aligned}$ |  | $\begin{aligned} & 225 \\ & 200 \\ & 165 \end{aligned}$ |  | $\begin{aligned} & - \\ & 270 \\ & 240 \\ & 195 \end{aligned}$ | $\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}$ <br> to <br> $V_{E E}$ | $\mathrm{V}_{\mathrm{IN}}$ <br> or VIL |
| $\mathrm{R}_{\mathrm{ON}}$ | ON resistance (rail) |  | $\begin{array}{\|l\|} \hline 150 \\ 80 \\ 70 \\ 60 \end{array}$ | $\begin{array}{\|l} - \\ 140 \\ 120 \\ 105 \end{array}$ |  | $\begin{aligned} & - \\ & 175 \\ & 150 \\ & 130 \end{aligned}$ |  | $\begin{aligned} & - \\ & 210 \\ & 180 \\ & 160 \end{aligned}$ | $\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \hline 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$ | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{IH}}$ <br> or $V_{I L}$ |
| $\mathrm{R}_{\text {ON }}$ | ON resistance (rail) |  | $\begin{array}{\|l\|} \hline 150 \\ 90 \\ 80 \\ 65 \\ \hline \end{array}$ | $\begin{aligned} & 160 \\ & 140 \\ & 120 \end{aligned}$ |  | $\begin{aligned} & - \\ & 200 \\ & 175 \\ & 150 \end{aligned}$ |  | $\begin{array}{\|l} \hline- \\ 240 \\ 210 \\ 180 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \Omega \\ \Omega \\ \Omega \\ \Omega \\ \hline \end{array}$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & \hline 100 \\ & 1000 \\ & 1000 \\ & 1000 \\ & \hline \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{IH}}$ <br> or VIL |
| $\Delta \mathrm{R}_{\mathrm{ON}}$ | maximum $\Delta \mathrm{ON}$ resistance between any two channels |  | - 9 8 6 |  |  |  |  |  | $\Omega$ $\Omega$ $\Omega$ $\Omega$ | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { to } \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | $\mathrm{V}_{\mathrm{IH}}$ <br> or VIL |

## Notes to DC characteristics

1. At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V , the analog switch ON -resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring $\mathrm{R}_{\mathrm{ON}}$ see Fig.8.

## 8-channel analog multiplexer/demultiplexer with latch

## 74HC/HCT4351

## DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V )

| SYMBOL | PARAMETER | $\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HC |  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{cc}}$ <br> (V) | $\mathrm{V}_{\mathrm{EE}}$ <br> (V) | $\mathrm{V}_{1}$ | OTHER |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH level input voltage | $\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$ | $\begin{aligned} & 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.7 \end{aligned}$ |  | $\begin{aligned} & \hline 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$ |  | $\begin{aligned} & 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$ |  | V | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$ |  |  |  |
| $\mathrm{V}_{\text {IL }}$ | LOW level input voltage |  | $\begin{aligned} & \hline 0.8 \\ & 2.1 \\ & 2.8 \\ & 4.3 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 1.35 \\ & 1.8 \\ & 2.7 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$ |  | $\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \\ \hline \end{array}$ | V | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$ |  |  |  |
| $\pm 1$ | input leakage current |  |  | $\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$ |  | $\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 1.0 \\ 2.0 \end{array}$ | $\mu \mathrm{A}$ | $\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}$ or GND |  |
| $\pm \mathrm{l}_{\text {S }}$ | analog switch OFF-state current per channel |  |  | 0.1 |  | 1.0 |  | 1.0 | $\mu \mathrm{A}$ | 10.0 | 0 | $\mathrm{V}_{\mathrm{IH}}$ <br> or $\mathrm{V}_{\mathrm{IL}}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mathrm{I}_{=} \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.10) } \\ & \hline \end{aligned}$ |
| $\pm \mathrm{l}_{\text {S }}$ | analog switch OFF-state current all channels |  |  | 0.4 |  | 4.0 |  | 4.0 | $\mu \mathrm{A}$ | 10.0 | 0 | $\mathrm{V}_{\mathrm{IH}}$ <br> or VIL | $\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{S}} \mathrm{I}= \\ \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ \text { (see Fig.10) } \\ \hline \end{array}$ |
| $\pm \mathrm{l}_{\text {S }}$ | analog switch ON-state current |  |  | 0.4 |  | 4.0 |  | 4.0 | $\mu \mathrm{A}$ | 10.0 | 0 | $\mathrm{V}_{\mathrm{IH}}$ <br> or VIL | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mathrm{I}^{2} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.11) } \end{aligned}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | quiescent supply current |  |  | $\begin{aligned} & \hline 8.0 \\ & 16.0 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 80.0 \\ 160.0 \end{array}$ |  | $\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}$ or GND | $\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ |

## 8-channel analog multiplexer/demultiplexer with latch

AC CHARACTERISTICS FOR 74HC
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

| SYMBOL | PARAMETER | $\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$ ) |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HC |  |  |  |  |  |  |  | $\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$ | OTHER |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |  |
| tPHL/ $\mathrm{t}_{\text {PLH }}$ | $\begin{aligned} & \text { propagation delay } \\ & \mathrm{V}_{\text {is }} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$ |  | $\begin{aligned} & \hline 14 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & 8 \end{aligned}$ |  | $\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$ |  | $\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 12 \end{aligned}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & R_{L}=\infty ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig.17) } \end{aligned}$ |
| tpzH/ tpzL | $\begin{aligned} & \text { turn "ON" time } \\ & \overline{\mathrm{E}}_{1} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$ |  | $\begin{aligned} & \hline 85 \\ & 31 \\ & 25 \\ & 28 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 300 \\ 60 \\ 51 \\ 55 \\ \hline \end{array}$ |  | $\begin{array}{\|l} \hline 375 \\ 75 \\ 64 \\ 69 \\ \hline \end{array}$ |  | $\begin{array}{\|l\|} \hline 450 \\ 90 \\ 77 \\ 83 \end{array}$ | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$ | $\begin{array}{\|l} \hline \text { turn "ON" time } \\ \mathrm{E}_{2} \text { to } \mathrm{V}_{\mathrm{os}} \end{array}$ |  | $\begin{array}{\|l\|} \hline 85 \\ 31 \\ 25 \\ 25 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 300 \\ 60 \\ 51 \\ 55 \\ \hline \end{array}$ |  | $\begin{array}{\|l} \hline 375 \\ 75 \\ 64 \\ 69 \\ \hline \end{array}$ |  | $\begin{array}{\|l\|} \hline 450 \\ 90 \\ 77 \\ 83 \\ \hline \end{array}$ | ns | 2.0 4.5 6.0 4.5 | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| tpzH/ tpzL | turn "ON" time $\overline{\mathrm{LE}}$ to $\mathrm{V}_{\mathrm{os}}$ |  | $\begin{aligned} & 91 \\ & 33 \\ & 26 \\ & 27 \end{aligned}$ | $\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \\ & 55 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 69 \end{array}$ |  | $\begin{array}{\|l} \hline 450 \\ 90 \\ 77 \\ 83 \end{array}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| tPzH/ tPZL | $\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$ |  | $\begin{aligned} & 88 \\ & 32 \\ & 26 \\ & 25 \end{aligned}$ | $\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \\ & 50 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 63 \end{array}$ |  | $\begin{array}{\|l\|} \hline 450 \\ 90 \\ 77 \\ 75 \end{array}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | $\begin{aligned} & \text { turn "OFF" time } \\ & \overline{\mathrm{E}}_{1} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$ |  | $\begin{aligned} & 69 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$ | $\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \\ 40 \end{array}$ |  | $\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \\ & 50 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 60 \end{array}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | turn "OFF" time $\mathrm{E}_{2}$ to $\mathrm{V}_{\text {os }}$ |  | $\begin{aligned} & \hline 72 \\ & 26 \\ & 21 \\ & 19 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \\ 40 \\ \hline \end{array}$ |  | $\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \\ & 50 \\ & \hline \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 60 \\ \hline \end{array}$ | ns | $\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 18 \text { ) } \end{aligned}$ |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | $\begin{aligned} & \text { turn "OFF" time } \\ & \overline{\mathrm{LE}} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$ |  | $\begin{aligned} & 83 \\ & 30 \\ & 24 \\ & 26 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ 45 \\ \hline \end{array}$ |  | $\begin{aligned} & \hline 345 \\ & 69 \\ & 59 \\ & 56 \\ & \hline \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 415 \\ 83 \\ 71 \\ 68 \end{array}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| tpHz/ tpLZ | $\begin{aligned} & \text { turn "OFF" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$ |  | $\begin{aligned} & \hline 80 \\ & 29 \\ & 23 \\ & 24 \end{aligned}$ | $\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ 48 \end{array}$ |  | $\begin{aligned} & \hline 345 \\ & 69 \\ & 59 \\ & 60 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 415 \\ 83 \\ 71 \\ 72 \end{array}$ | ns | $\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |

8-channel analog multiplexer/demultiplexer with latch

| SYMBOL | PARAMETER | Tamb ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HC |  |  |  |  |  |  |  | $V_{c c}$ <br> (V) | $\mathrm{V}_{\mathrm{EE}}$ <br> (V) | OTHER |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |  |
| $\mathrm{t}_{\text {su }}$ | set-up time $S_{n}$ to $\overline{\mathrm{LE}}$ | $\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & 18 \end{aligned}$ | $\begin{aligned} & \hline 17 \\ & 6 \\ & 5 \\ & 9 \end{aligned}$ |  |  | $\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 23 \end{aligned}$ |  | $\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 27 \end{aligned}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 19 \text { ) } \end{aligned}$ |
| $\mathrm{t}_{\mathrm{h}}$ | hold time $\mathrm{S}_{\mathrm{n}}$ to $\overline{\mathrm{LE}}$ | $\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & -8 \\ & -3 \\ & -2 \\ & -4 \end{aligned}$ |  |  | 5 5 5 5 |  | $\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$ |
| tw | $\overline{\mathrm{LE}}$ minimum pulse width HIGH | $\begin{aligned} & 100 \\ & 20 \\ & 17 \\ & 25 \end{aligned}$ | $\begin{aligned} & \hline 11 \\ & 1 \\ & 3 \\ & 7 \end{aligned}$ |  |  | $\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \\ & 31 \end{aligned}$ |  | $\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \\ & 38 \end{aligned}$ | ns | $\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 19 \text { ) } \end{aligned}$ |

## 8-channel analog multiplexer/demultiplexer with latch

## 74HC/HCT4351

DC CHARACTERISTICS FOR 74HCT
Voltages are referenced to GND (ground =0)

| SYMBOL | PARAMETER | Tamb ${ }^{\circ}{ }^{\text {C }}$ ) |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HCT |  |  |  |  |  |  |  | $V_{c c}$ <br> (V) | $V_{E E}$ <br> (V) | $V_{1}$ | OTHER |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH level input voltage | 2.0 | 1.6 |  | 2.0 |  | 2.0 |  | V | $\begin{array}{\|l\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$ |  |  |  |
| VIL | LOW level input voltage |  | 1.2 | 0.8 |  | 0.8 |  | 0.8 | V | $\begin{array}{\|l} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$ |  |  |  |
| $\pm 1$ | input leakage current |  |  | 0.1 |  | 1.0 |  | 1.0 | $\mu \mathrm{A}$ | 5.5 | 0 | $\mathrm{V}_{\mathrm{CC}}$ or GND |  |
| $\pm \mathrm{l}_{\text {S }}$ | analog switch OFF-state current per channel |  |  | 0.1 |  | 1.0 |  | 1.0 | $\mu \mathrm{A}$ | 10.0 | 0 | $\mathrm{V}_{\mathrm{IH}}$ <br> or VIL | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}{ }^{1}= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see } \\ & \text { Fig.10) } \\ & \hline \end{aligned}$ |
| $\pm \mathrm{l}_{\text {S }}$ | analog switch OFF-state current all channels |  |  | 0.4 |  | 4.0 |  | 4.0 | $\mu \mathrm{A}$ | 10.0 | 0 | $\mathrm{V}_{\mathrm{IH}}$ <br> or $V_{I L}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mid= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see } \\ & \text { Fig.10) } \\ & \hline \end{aligned}$ |
| $\pm \mathrm{l}_{\text {S }}$ | analog switch ON-state current |  |  | 0.4 |  | 4.0 |  | 4.0 | $\mu \mathrm{A}$ | 10.0 | 0 | $\mathrm{V}_{\mathrm{IH}}$ <br> or $\mathrm{V}_{\mathrm{IL}}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}{ }^{1}= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see } \\ & \text { Fig.11) } \end{aligned}$ |
| ICC | quiescent supply current |  |  | $\begin{array}{\|l\|} \hline 8.0 \\ 16.0 \end{array}$ |  | $\begin{array}{\|l\|} \hline 80.0 \\ 160.0 \end{array}$ |  | $\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & 0 \\ & -5.0 \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}$ or GND | $\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ |
| $\Delta \mathrm{l}_{\mathrm{CC}}$ | additional quiescent supply current per input pin for unit load coefficient is 1 (note 1) |  | 100 | 360 |  | 450 |  | 490 | $\mu \mathrm{A}$ | $\begin{array}{\|l} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$ | 0 | $\begin{aligned} & V_{C C} \\ & -2.1 \mathrm{~V} \end{aligned}$ | other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |

## Note to HCT types

1. The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given here. To determine $\Delta \mathrm{I}_{\mathrm{Cc}}$ per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT | UNIT LOAD COEFFICIENT |
| :--- | :--- |
| $\bar{E}_{1}, \mathrm{E}_{2}$ | 0.50 |
| $\frac{S_{n}}{\mathrm{LE}}$ | 0.50 |

## 8-channel analog multiplexer/demultiplexer with latch

AC CHARACTERISTICS FOR 74HCT
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

| SYMBOL | PARAMETER | $\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  | UNIT | TEST CONDITIONS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 74HCT |  |  |  |  |  |  |  | $\begin{array}{\|l} \mathrm{v}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{array}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$ | OTHER |
|  |  | +25 |  |  | -40 to +85 |  | -40 to +125 |  |  |  |  |  |
|  |  | min. | typ. | max. | min. | max. | min. | max. |  |  |  |  |
| $\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$ | $\begin{aligned} & \text { propagation delay } \\ & \mathrm{V}_{\text {is }} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 6 \\ 4 \end{array}$ | $\begin{aligned} & 12 \\ & \hline 8 \end{aligned}$ |  | $\begin{aligned} & 15 \\ & 10 \end{aligned}$ |  | $\begin{aligned} & 18 \\ & 12 \end{aligned}$ | ns | $\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.17) } \end{aligned}$ |
| tpzH $^{\text {t }}$ PzL | turn "ON" time $\bar{E}_{1}$ to $V_{\text {os }}$ |  | $\begin{array}{\|l\|} \hline 40 \\ 31 \end{array}$ | $\begin{aligned} & \hline 75 \\ & 60 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 94 \\ 75 \end{array}$ |  | $\begin{array}{\|l\|} \hline 113 \\ 90 \end{array}$ | ns | $\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$ | $\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{E}_{2} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 35 \\ 26 \end{array}$ | $\begin{aligned} & 70 \\ & 50 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 88 \\ 63 \end{array}$ |  | $\begin{aligned} & \hline 105 \\ & 75 \end{aligned}$ | ns | $\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$ | $\begin{array}{\|l} \hline \text { turn "ON" time } \\ \hline \mathrm{LE} \text { to } \mathrm{V}_{\text {os }} \end{array}$ |  | $\begin{aligned} & 42 \\ & 37 \end{aligned}$ | $\begin{aligned} & 75 \\ & 60 \end{aligned}$ |  | $\begin{aligned} & 94 \\ & 75 \end{aligned}$ |  | $\begin{aligned} & \hline 113 \\ & 90 \end{aligned}$ | ns | $\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$ | $\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$ |  | $\begin{aligned} & 39 \\ & 30 \end{aligned}$ | $\begin{aligned} & 75 \\ & 60 \end{aligned}$ |  | $\begin{aligned} & 94 \\ & 75 \end{aligned}$ |  | $\begin{array}{\|l} \hline 113 \\ 90 \end{array}$ | ns | $\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| tPHZ ${ }^{\text {tpLZ }}$ | turn "OFF" time $\bar{E}_{1}$ to $V_{\text {os }}$ |  | $\begin{aligned} & \hline 27 \\ & 20 \end{aligned}$ | $\begin{aligned} & 55 \\ & 40 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 69 \\ 50 \end{array}$ |  | $\begin{aligned} & \hline 83 \\ & 60 \end{aligned}$ | ns | $\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | $\begin{aligned} & \text { turn "OFF" time } \\ & \mathrm{E}_{2} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$ |  | $\begin{aligned} & 32 \\ & 26 \end{aligned}$ | $\begin{aligned} & 60 \\ & 50 \end{aligned}$ |  | $\begin{aligned} & 75 \\ & 63 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 90 \\ 75 \end{array}$ | ns | $\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \\ & \hline \end{aligned}$ |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | turn "OFF" time $\overline{\mathrm{LE}}$ to $\mathrm{V}_{\text {os }}$ |  | $\begin{aligned} & \hline 33 \\ & 30 \end{aligned}$ | $\begin{aligned} & 60 \\ & 55 \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 75 \\ 69 \end{array}$ |  | $\begin{array}{\|l\|} \hline 90 \\ 83 \end{array}$ | ns | $\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$ |
| $\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$ | turn "OFF" time $S_{n}$ to $V_{\text {os }}$ |  | $\begin{array}{\|l\|l\|} \hline 33 \\ 29 \end{array}$ | $\begin{array}{\|l\|} \hline 65 \\ 55 \end{array}$ |  | $\begin{array}{\|l\|} \hline 81 \\ 69 \end{array}$ |  | $\begin{array}{l\|} 98 \\ 83 \end{array}$ | ns | $\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \\ & \hline \end{aligned}$ |
| $\mathrm{t}_{\text {su }}$ | set-up time $S_{n}$ to $\overline{L E}$ | $\begin{aligned} & \hline 12 \\ & 14 \end{aligned}$ | $\begin{aligned} & 6 \\ & \hline 7 \end{aligned}$ |  |  | $\begin{aligned} & \hline 15 \\ & 18 \end{aligned}$ |  | $\begin{aligned} & 18 \\ & 21 \end{aligned}$ | ns | $\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$ |
| th | hold time $S_{n}$ to $\overline{L E}$ | $\begin{array}{\|l\|} \hline 5 \\ 5 \end{array}$ | $\begin{array}{\|l\|} \hline-1 \\ -2 \end{array}$ |  |  | $\begin{array}{\|l\|} \hline 5 \\ 5 \end{array}$ |  | $\begin{array}{\|l\|} \hline 5 \\ 5 \end{array}$ | ns | $\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \\ & \hline \end{aligned}$ |
| tw | $\overline{\overline{L E}}$ minimum pulse width HIGH | $\begin{aligned} & 25 \\ & 25 \end{aligned}$ | $\begin{aligned} & \hline 13 \\ & 13 \end{aligned}$ |  |  | $\begin{array}{\|l\|} \hline 31 \\ 31 \end{array}$ |  | $\begin{aligned} & 38 \\ & 38 \end{aligned}$ | ns | $\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$ | $\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$ |

## 8-channel analog multiplexer/demultiplexer with latch



Fig. 8 Test circuit for measuring R R ${ }_{\text {ON }}$.


Fig. 9 Typical Ron as a function of input voltage $V_{\text {is }}$ for $V_{\text {is }}=0$ to $V_{C C}-V_{E E}$.


Fig. 10 Test circuit for measuring OFF-state current.


Fig. 11 Test circuit for measuring ON-state current.

## 8-channel analog multiplexer/demultiplexer with latch

## 74HC/HCT4351

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT
Recommended conditions and typical values
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | typ. | UNIT | $V_{c c}$ <br> (V) | $\mathrm{V}_{\mathrm{EE}}$ <br> (V) | $V_{i s(p-p)}$ <br> (V) | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | sine-wave distortion $f=1 \mathrm{kHz}$ | $\begin{array}{\|l\|} \hline 0.04 \\ 0.02 \end{array}$ | $\begin{array}{\|l\|} \hline \% \\ \% \end{array}$ | $\begin{aligned} & \hline 2.25 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} -2.25 \\ -4.5 \end{array}$ | $\begin{aligned} & \hline 4.0 \\ & 8.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 14) } \end{aligned}$ |
|  | sine-wave distortion $\mathrm{f}=10 \mathrm{kHz}$ | $\begin{array}{\|l\|} \hline 0.12 \\ 0.06 \end{array}$ | $\begin{array}{\|l\|} \hline \% \\ \% \\ \hline \end{array}$ | $\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$ | $\begin{aligned} & \hline 4.0 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 14) } \end{aligned}$ |
|  | switch "OFF" signal feed-through | $\begin{aligned} & \hline-50 \\ & -50 \end{aligned}$ | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$ | note 1 | $\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ <br> (see Figs 12 and 15) |
| $\mathrm{V}_{(\mathrm{p}-\mathrm{p})}$ | crosstalk voltage between control and any switch (peak-to-peak value) | $\begin{aligned} & 120 \\ & 220 \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$ |  | $\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ $\mathrm{f}=1 \mathrm{MHz}\left(\overline{\mathrm{E}}_{1}, \mathrm{E}_{2} \text { or } \mathrm{S}_{\mathrm{n}},\right.$ <br> square-wave between $V_{C C}$ <br> and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ ) <br> (see Fig.16) |
| $\mathrm{f}_{\text {max }}$ | minimum frequency response (-3dB) | $\begin{aligned} & \hline 160 \\ & 170 \end{aligned}$ | MHz <br> MHz | $\begin{aligned} & \hline 2.25 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$ | note 2 | $\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 13 and 14) |
| $\mathrm{C}_{S}$ | maximum switch capacitance independent (Y) common <br> (Z) | $\begin{aligned} & 5 \\ & 25 \end{aligned}$ | $\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$ |  |  |  |  |

## Notes to AC characteristics

1. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
2. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.
$V_{\text {is }}$ is the input voltage at a $Y_{n}$ or $Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $Y_{n}$ or $Z$ terminal, whichever is assigned as an output.


## 8-channel analog multiplexer/demultiplexer with latch

## 74HC/HCT4351

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.


Fig. 13 Typical frequency response.


Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.


Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.


The crosstalk is defined as follows (oscilloscope output):


Fig. 16 Test circuit for measuring crosstalk between control and any switch.

## 8-channel analog multiplexer/demultiplexer with latch

## 74HC/HCT4351

AC WAVEFORMS


Fig. 17 Waveforms showing the input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays.


HC : $\mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$.
HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 18 Waveforms showing the turn-ON and turn-OFF times.
$H C: V_{M}=50 \% ; V_{1}=G N D$ to $V_{C C}$.
HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 19 Waveforms showing the set-up and hold times from $S_{n}$ inputs to $\overline{L E}$ input, and minimum pulse width of $\overline{\mathrm{LE}}$.

## 8-channel analog multiplexer/demultiplexer with latch

## TEST CIRCUIT AND WAVEFORMS

## Conditions

| TEST | SWITCH | $\mathbf{V}_{\text {is }}$ |
| :--- | :--- | :--- |
| $\mathrm{t}_{\text {PZH }}$ | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{t}_{\mathrm{PZL}}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{EE}}$ |
| $\mathrm{t}_{\mathrm{PHZ}}$ | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{t}_{\text {PLZ }}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{EE}}$ |
| others | open | pulse |



| FAMILY | AMPLITUDE | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | OTHER |  |
| 74 HC | $\mathrm{V}_{\mathrm{CC}}$ | $50 \%$ | $<2 \mathrm{~ns}$ | 6 ns |
| 74 HCT | 3.0 V | 1.3 V | $<2 \mathrm{~ns}$ | 6 ns |

$C_{L} \quad=\quad$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$\mathrm{R}_{\mathrm{T}} \quad=$ termination resistance should be equal to the output impedance $\mathrm{Z}_{\mathrm{O}}$ of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{m a x}$, there is no constraint on $t_{r}, t_{f}$ with $50 \%$ duty factor.

Fig. 20 Test circuit for measuring AC performance.

Conditions

| TEST | SWITCH | $\mathbf{V}_{\text {is }}$ |
| :--- | :--- | :--- |
| $\mathrm{t}_{\mathrm{PZH}}$ | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{t}_{\mathrm{PZL}}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{EE}}$ |
| $\mathrm{t}_{\mathrm{PHZ}}$ | $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{t}_{\mathrm{PLZ}}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{EE}}$ |
| others | open | pulse |



| FAMILY | AMPLITUDE | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | $\mathbf{f}_{\text {max }} ;$ <br> PULSE WIDTH | OTHER |
|  | $\mathrm{V}_{\mathrm{CC}}$ | $50 \%$ | $<2 \mathrm{~ns}$ | 6 ns |
| 74 HCT | 3.0 V | 1.3 V | $<2 \mathrm{~ns}$ | 6 ns |

$C_{L} \quad=\quad$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T} \quad=$ termination resistance should be equal to the output impedance $Z_{O}$ of the pulse generator.
$t_{r}=t_{f}=6 n s$; when measuring $f_{\text {max }}$, there is no constraint on $t_{r}, t_{f}$ with $50 \%$ duty factor.

Fig. 21 Input pulse definitions.

## 8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

## PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

