

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4353 Triple 2-channel analog multiplexer/demultiplexer with latch

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4353

FEATURES

- Wide analog input voltage range: ± 5 V
- Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$

70 Ω (typ.) at $V_{CC} - V_{EE} = 6.0 \text{ V}$

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

• Logic level translation: to enable 5 V logic to communicate with \pm 5 V analog signals

- Typical "break before make" built in
- · Address latches provided
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4353 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4353 are triple 2-channel analog multiplexers/demultiplexers with two common enable inputs $(\overline{E}_1$ and $E_2)$ and a latch enable input (\overline{LE}) . Each

multiplexer has two independent inputs/outputs (nY_0 and nY_1), a common input/output (nZ) and select inputs (S_1 to S_3).

Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an independent input/output (nY_0 and nY_1) and the other side connected to a common input/output (nZ).

With \overline{E}_1 LOW and E_2 HIGH, one of the two switches is selected (low impedance ON-state) by S_1 to S_3 . The data at the select inputs may be latched by using the active LOW latch enable input (\overline{LE}). When \overline{LE} is HIGH, the latch is transparent. When either of the two enable inputs, \overline{E}_1 (active LOW) and E_2 (active HIGH), is inactive, all analog switches are turned off.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_1$ to S $_3$, \overline{LE} , \overline{E}_1 and E $_2$). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY $_0$ and nY $_1$, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC}-V_{EE}$ may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

$$V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBUL	PARAMETER	CONDITIONS	НС	нст	01411	
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 , E_2 or S_n to V_{os}	$C_L = 50 \text{ pF}; R_L = 1 \text{ k}\Omega;$	29	21	ns	
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 , E_2 or S_n to V_{os}	V _{CC} = 5 V	20	22	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	23	23	pF	
Cs	max. switch capacitance					
	independent (Y)		5	5	pF	
	common (Z)		8	8	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} \text{ where:}$$

f_i = input frequency in MHz

C_L = output load capacitance in pF

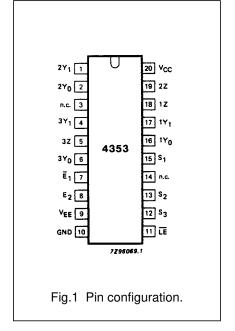
f_o = output frequency in MHz

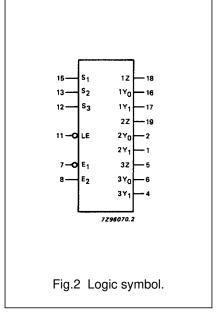
C_S = max. switch capacitance in pF

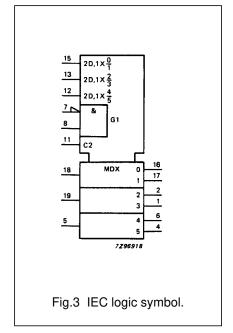
$$\sum \{(C_L \times C_S) \times V_{CC}^2 \times f_0\} = \text{sum of outputs}$$

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT4353

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 1	2Y ₀ , 2Y ₁	independent inputs/outputs
5	3Z	common input/output
6, 4	3Y ₀ , 3Y ₁	independent inputs/outputs
3, 14	n.c.	not connected
7	E ₁	enable input (active LOW)
8	E ₂	enable input (active HIGH)
9	V _{EE}	negative supply voltage
10	GND	ground (0 V)
11	ĪĒ	latch enable input (active LOW)
15, 13, 12	S ₁ to S ₃	select inputs
16, 17	1Y ₀ , 1Y ₁	independent inputs/outputs
18	1Z	common input/output
19	2Z	common input/output
20	V _{CC}	positive supply voltage

74HC/HCT4353

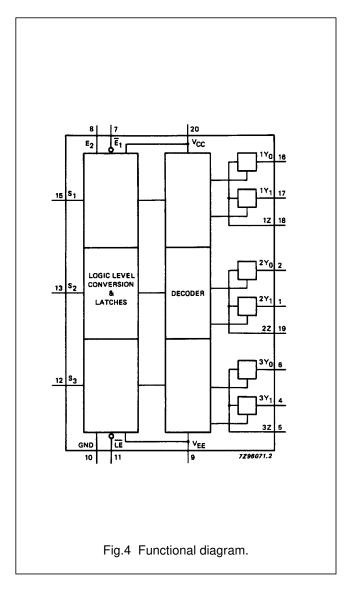
FUNCTION TABLE

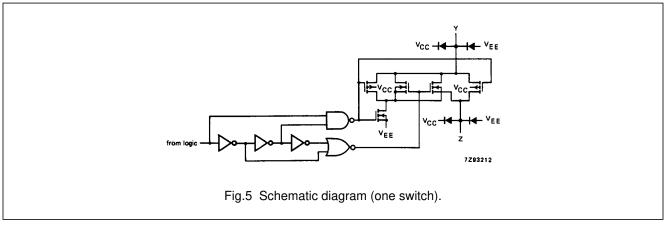
	INPL	CHANNEL		
Ē ₁	E ₂	LE	Sn	ON
Н	Н	Х	Х	none
X	L	Х	Х	none
L	Н	Н	L	nY0 – nZ
L	Н	Н	Н	$nY_1 - nZ$
L	Н	L	Х	(1)
X	X	\downarrow	Х	(2)

Notes

- 1. Last selected channel "ON".
- 2. Selected channels latched.

H = HIGH voltage level


L = LOW voltage level


X = don't care

 \downarrow = HIGH-to-LOW $\overline{\text{LE}}$ transition

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Triple 2-channel analog multiplexer/demultiplexer with latch

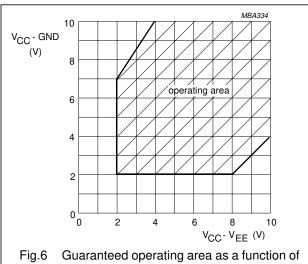
74HC/HCT4353

RATINGS

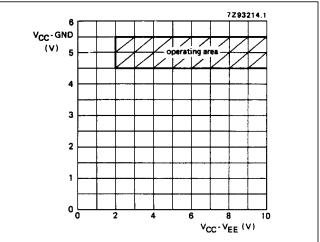
Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings


1. To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS


SYMBOL	PARAMETER		74HC	;		74HC	Γ	UNIT	CONDITIONS	
STIMBOL	PARAMETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS	
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	٧	see Figs 6 and 7	
V _{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	٧	see Figs 6 and 7	
VI	DC input voltage range	GND		V_{CC}	GND		V_{CC}	٧		
V _S	DC switch voltage range	V _{EE}		V _{CC}	V _{EE}		V _{CC}	٧		
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC	
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTER- ISTICS	
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$	

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

the supply voltages for 74HC4353.

Guaranteed operating area as a function of the supply voltages for 74HCT4353.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

					Γ _{amb} (°	C)				-	ΓEST (COND	TION	S
CVMDOL	PARAMETER		74HC/HCT											
SYMBOL		+25		−40 t	-40 to +85		-40 to +125		V _{CC}	V _{EE} (V)	I s (μ A)	Vis	Vı	
		min.	typ.	max.	min.	max.	min.	max.		(-,	(-,	(102-17		
R _{ON}	ON resistance		_	_		_		_	Ω	2.0	0	100	V_{CC}	V_{IN}
	(peak)		100	180		225		270	Ω	4.5	0	1000	to	or
			90	160		200		240	Ω	6.0	0	1000	V_{EE}	V_{IL}
			70	130		165		195	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance		150	_		_		_	Ω	2.0	0	100	V _{EE}	V _{IH}
	(rail)		80	140		175		210	Ω	4.5	0	1000		or
			70	120		150		180	Ω	6.0	0	1000		V_{IL}
			60	105		130		160	Ω	4.5	-4.5	1000		
R _{ON}	ON resistance		150	_		_		_	Ω	2.0	0	100	V_{CC}	V _{IH}
			90	160		200		240	Ω	4.5	0	1000		or
			80	140		175		210	Ω	6.0	0	1000		V_{IL}
			65	120		150		180	Ω	4.5	-4.5	1000		
ΔR_{ON}	maximum		_						Ω	2.0	0		V _{CC}	V _{IH}
-	ΔON resistance		9						Ω	4.5	0		to	or
	between any two		8						Ω	6.0	0		VEE	V_{IL}
	channels		6						Ω	4.5	-4.5			

Notes to DC characteristics

- 1. At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} ((°C)					TEST	CONE	DITIONS
OVMOOL	DADAMETED				74H	С			UNIT				
SYMBOL	PARAMETER		+25		-40	-40 to +85		-40 to +125		V _{CC}	V _{EE} (V)	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(,,	(•)		
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0			
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
±l ₁	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μΑ	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE} \text{ or}$ V_{CC} ; $V_{os} =$ $V_{CC} \text{ or } V_{EE}$

74HC/HCT4353

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF$

				-	Γ _{amb} (°	C)				TE	ST CO	NDITIONS
CVMPOL	DADAMETED				74HC	;			LINIT			
SYMBOL	PARAMETER		+25		−40 t	o +85	−40 to	+125	UNIT	V _{CC} (V)	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(' '	(,	
t _{PHL} / t _{PLH}	propagation delay V_{is} to V_{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 ; E_2 to V_{os}		61 22 18 18	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		55 20 16 17	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time S_n to V_{os}		61 22 18 17	225 45 38 40		280 56 48 50		340 68 58 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 ; E_2 to V_{os}		66 24 19 19	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time S_n to V_{os} ; \overline{LE} to V_{os}		55 20 16 19	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{su}	set-up time S _n to $\overline{\text{LE}}$	60 12 10 18	17 6 5 8		75 15 13 23		90 18 15 27		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _h	hold time S _n to $\overline{\text{LE}}$	5 5 5 5	-6 -2 -2 -3		5 5 5 5		5 5 5 5		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _W	LE minimum pulse width HIGH	80 16 14 16	11 4 3 6		100 20 17 20		120 24 20 24		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)

74HC/HCT4353

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°C)					TEST	COND	ITIONS
SYMBOL	PARAMETER				74HC	т			UNIT				
STWBUL	PARAMETER		+25		-40 to +85		-40 to +125		UNII	V _{CC}	V _{EE}	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(',	(' /		
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±I _I	input leakage current			0.1		1.0		1.0	μΑ	5.5	0	V _{CC} or GND	
±l _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10
±I _S	analog switch OFF-state current all channels			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.10
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ Fig.11
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	5.5 5.0	0 -5.0	V _{CC} or GND	$\begin{aligned} &V_{is} = V_{EE} \\ &\text{or } V_{CC}; \\ &V_{os} = \\ &V_{CC} \text{ or } V_{EE} \end{aligned}$
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

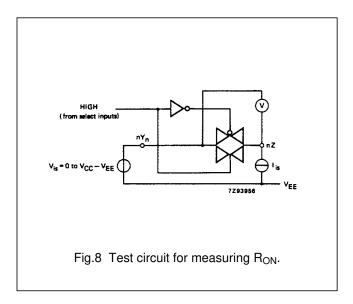
Note to HCT types

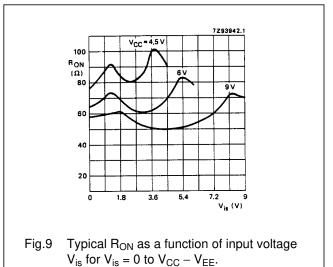
1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

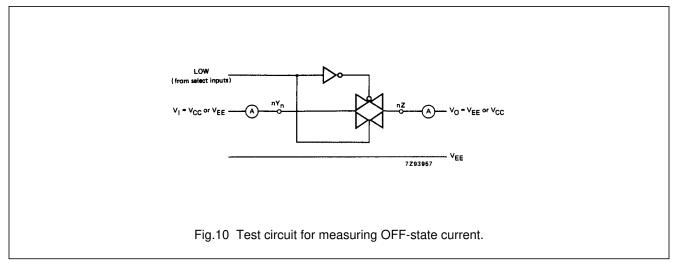
	UNIT LOAD COEFFICIENT
\overline{E}_1,E_2	0.50
S _n	0.50
<u>LE</u>	1.5

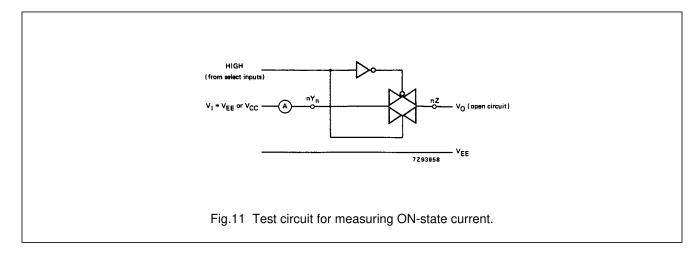
Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF$


					T _{amb} (°C)				Т	EST C	ONDITIONS
CVMDOL	DADAMETED				74HC	T						
SYMBOL	PARAMETER		+25		-40 t	to +85	-40 to	+125	UNIT	V _{CC} (V)	V _{EE}	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(,,	(,	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 to V_{os}		26 22	55 45		69 56		83 68	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time E ₂ to V _{os}		22 18	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		21 17	45 40		56 50		68 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		25 19	50 45		63 56		75 68	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 to V_{os}		23 19	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time E ₂ to V _{os}		27 23	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time LE to V _{os}		19 19	40 40		50 50		60 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		22 22	45 45		56 56		68 68	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _{su}	set-up time S _n to LE	12 15	7 9		15 19		18 22		ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _h	hold time S _n to LE	5 5	0 -2		5 5		5 5		ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)
t _W	LE minimum pulse width HIGH	16 16	3 5		20 20		24 24		ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.20)


Triple 2-channel analog multiplexer/demultiplexer with latch

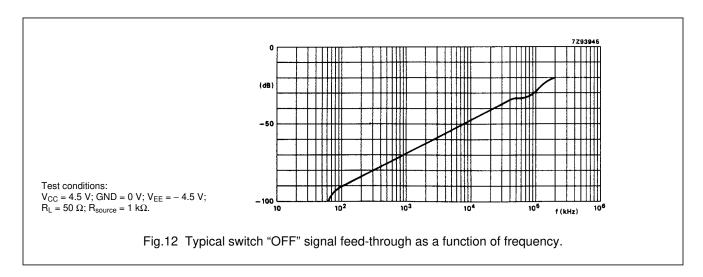
74HC/HCT4353

74HC/HCT4353

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

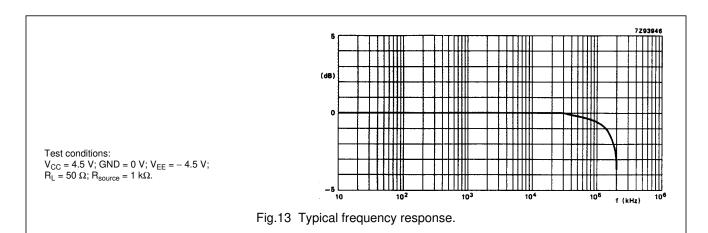
Recommended conditions and typical values

GND = 0 V; T_{amb} = 25 °C


SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	%	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \ \Omega; C_L = 50 \ pF$ f = 1 MHz (see Figs 12 and 15)
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega; C_L = 50 pF;$ f = 1 MHz (see Fig.16)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		$\begin{split} R_L &= 600 \ \Omega; \ C_L = 50 \ \text{pF}; \\ f &= 1 \ \text{MHz} \ (\overline{E}_1, \ E_2 \ \text{or} \ S_n, \\ \text{square-wave between} \\ V_{CC} \ \text{and} \ GND, \ t_r = t_f = 6 \ \text{ns}) \\ (\text{see Fig.17}) \end{split}$
f _{max}	minimum frequency response (–3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 13 and 14)
C _S	maximum switch capacitance independent (Y) common (Z)	5 12	pF pF				

Notes to the AC characteristics

- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).


General note

 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

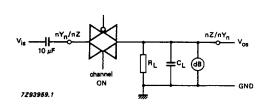
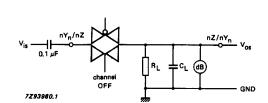
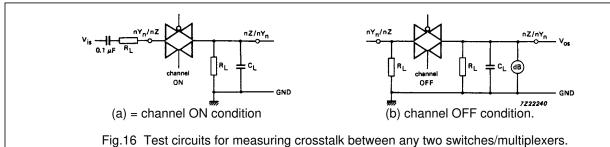
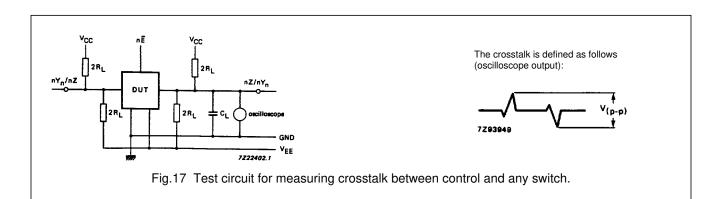
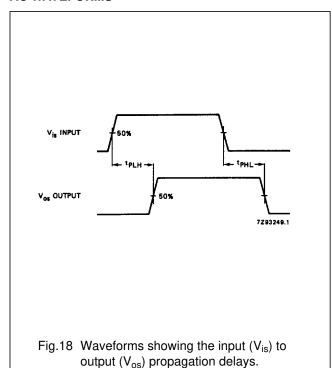


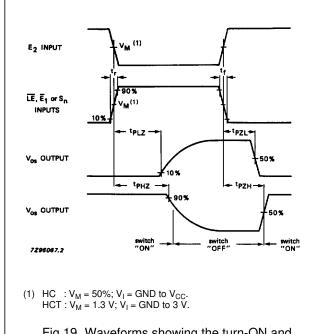
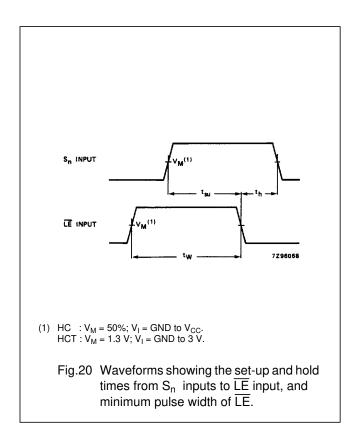
Fig.14 Test circuit for measuring sine-wave distortion and minimum frequency response.

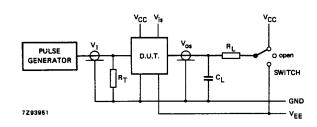





Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

74HC/HCT4353

AC WAVEFORMS


Fig.19 Waveforms showing the turn-ON and turn-OFF times.

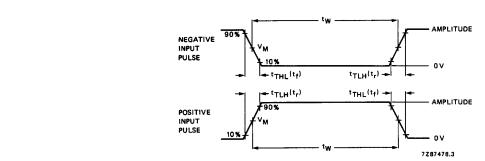
Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	V_{EE}
t _{PHZ}	V _{EE}	V_{CC}
t_{PLZ}	V _{CC}	V_{EE}
others	open	pulse


	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.21 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	V _{EE}	V_{CC}
t _{PZL}	V _{CC}	V _{EE}
t _{PHZ}	V _{EE}	V_{CC}
t _{PLZ}	V _{CC}	V_{EE}
others	open	pulse

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC	V _{CC}	50%	< 2 ns	6 ns
74HCT	3.0 V	1.3 V	< 2 ns	6 ns

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.22 Input pulse definitions.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".