: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4353 Triple 2-channel analog multiplexer/demultiplexer with latch

File under Integrated Circuits, IC06

Triple 2-channel analog

multiplexer/demultiplexer with latch

74HC/HCT4353

FEATURES

- Wide analog input voltage range: $\pm 5 \mathrm{~V}$
- Low "ON" resistance:
80Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
70Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
60Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation:
to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Address latches provided
- Output capability: non-standard
- I ICC category: MSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 4353$ are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 4353$ are triple 2-channel analog multiplexers/demultiplexers with two common enable inputs $\left(\overline{\mathrm{E}}_{1}\right.$ and $\left.\mathrm{E}_{2}\right)$ and a latch enable input ($\left.\overline{\mathrm{LE}}\right)$. Each
multiplexer has two independent inputs/outputs ($\mathrm{n} \mathrm{Y}_{0}$ and $n \mathrm{Y}_{1}$), a common input/output (nZ) and select inputs (S_{1} to S_{3}).
Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an independent input/output ($n \mathrm{Y}_{0}$ and $n \mathrm{Y}_{1}$) and the other side connected to a common input/output (nZ).
With $\overline{\mathrm{E}}_{1}$ LOW and E_{2} HIGH, one of the two switches is selected (low impedance ON-state) by S_{1} to S_{3}.
The data at the select inputs may be latched by using the active LOW latch enable input ($\overline{\mathrm{LE}})$. When $\overline{\mathrm{LE}}$ is HIGH, the latch is transparent. When either of the two enable inputs, $\overline{\mathrm{E}}_{1}$ (active LOW) and E_{2} (active HIGH), is inactive, all analog switches are turned off.
V_{CC} and GND are the supply voltage pins for the digital control inputs (S_{1} to $\mathrm{S}_{3}, \overline{\mathrm{LE}}, \overline{\mathrm{E}}_{1}$ and E_{2}). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs ($n Y_{0}$ and $n Y_{1}$, and $n Z$) can swing between V_{CC} as a positive limit and $\mathrm{V}_{\text {EE }}$ as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\bar{E}_{1}, \mathrm{E}_{2}$ or S_{n} to $\mathrm{V}_{\text {os }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	29	21	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{E}}_{1}, \mathrm{E}_{2}$ or S_{n} to $\mathrm{V}_{\text {os }}$		20	22	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per switch	notes 1 and 2	23	23	pF
C_{S}	max. switch capacitance independent (Y) common (Z)		$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{array}{\|l} 5 \\ 8 \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in μW):
$P_{D}=$
$C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$C_{L}=$ output load capacitance in pF
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF
$\sum\left\{\left(C_{L} \times C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}=$ sum of outputs
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Triple 2-channel analog

 multiplexer/demultiplexer with latch
PIN DESCRIPTION

PIN NO.	SYMBOL 2	NAME AND FUNCTION
2,1	$2 \mathrm{Y}_{0}, 2 \mathrm{Y}_{1}$	independent inputs/outputs
5	3 Z	common input/output
6,4	$3 \mathrm{Y}_{0}, 3 \mathrm{Y}_{1}$	independent inputs/outputs
3,14	n.c.	not connected
7	$\overline{\mathrm{E}}_{1}$	enable input (active LOW)
8	E_{2}	enable input (active HIGH)
9	$\mathrm{~V}_{\mathrm{EE}}$	negative supply voltage
10	GND	ground (0 V)
11	LE	latch enable input (active LOW)
$15,13,12$	$\mathrm{~S}_{1}$ to S_{3}	select inputs
16,17	$1 \mathrm{Y}_{0}, 1 \mathrm{Y}_{1}$	independent inputs/outputs
18	1 Z	common input/output
19	2 Z	common input/output
20	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 3 IEC logic symbol.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

FUNCTION TABLE

INPUTS				CHANNEL	
ON					

Notes

1. Last selected channel "ON".
2. Selected channels latched.
$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
X = don't care
$\downarrow=$ HIGH-to-LOW $\overline{\text { LE }}$ transition

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Fig. 4 Functional diagram.

Fig. 5 Schematic diagram (one switch).

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
$\mathrm{V}_{\text {CC }}$	DC supply voltage	-0.5	+11.0	V	
$\pm \mathrm{I}_{\text {IK }}$	DC digital input diode current		20	mA	for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {SK }}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {S }}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {EE }}$	DC V $\mathrm{EEE}^{\text {current }}$		20	mA	
$\begin{aligned} & \pm \mathrm{I}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{GND}} \end{aligned}$	DC V $\mathrm{CC}^{\text {or }}$ GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ 74HC/HCT above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
P_{S}	power dissipation per switch		100	mW	

Note to ratings

1. To avoid drawing V_{cc} current out of terminals nZ , when switch current flows in terminals $n Y_{n}$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminals $n Z$, no V_{Cc} current will flow out of terminals $n Y_{n}$. In this case there is no limit for the voltage drop across the switch, but the voltages at $n Y_{n}$ and $n Z$ may not exceed $V_{C C}$ or $V_{E E}$.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
V_{CC}	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V_{CC}	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
V_{1}	DC input voltage range	GND		V_{CC}	GND		$\mathrm{V}_{C C}$	V	
V_{S}	DC switch voltage range	V_{EE}		V_{CC}	V_{EE}		V_{CC}	V	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	see DC and AC
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CHARACTERISTICS
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		6.0	$\begin{aligned} & \hline 1000 \\ & 500 \\ & 400 \\ & 250 \\ & \hline \end{aligned}$		6.0	500	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \\ & \hline \end{aligned}$

Fig. 6 Guaranteed operating area as a function of the supply voltages for 74 HC 4353 .

Fig. 7 Guaranteed operating area as a function of the supply voltages for 74 HCT 4353.

DC CHARACTERISTICS FOR 74HC/HCT

For $74 \mathrm{HC}: \quad \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V
For $74 \mathrm{HCT}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS				
		74HC/HCT								$V_{C c}$ (V)	V_{EE} (V)	Is ($\mu \mathrm{A}$)	$\mathrm{V}_{\text {is }}$	V_{1}
		+25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
RON	ON resistance (peak)		$\begin{array}{\|l\|} \hline- \\ 100 \\ 90 \\ 70 \end{array}$	$\begin{aligned} & 180 \\ & 160 \\ & 130 \end{aligned}$		$\begin{aligned} & 225 \\ & 200 \\ & 165 \end{aligned}$		$\begin{aligned} & 270 \\ & 240 \\ & 195 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	$V_{C C}$ to V_{EE}	V_{IN} or VIL
$\mathrm{R}_{\text {ON }}$	ON resistance (rail)		$\begin{array}{\|l\|} \hline 150 \\ 80 \\ 70 \\ 60 \end{array}$	$\begin{aligned} & - \\ & 140 \\ & 120 \\ & 105 \end{aligned}$		$\begin{aligned} & - \\ & 175 \\ & 150 \\ & 130 \end{aligned}$		$\begin{aligned} & - \\ & 210 \\ & 180 \\ & 160 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{EE}	V_{IH} or $V_{I L}$
R_{ON}	ON resistance		$\begin{array}{\|l\|} \hline 150 \\ 90 \\ 80 \\ 65 \end{array}$	$\begin{aligned} & - \\ & 160 \\ & 140 \\ & 120 \end{aligned}$		$\begin{aligned} & - \\ & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{aligned} & - \\ & 240 \\ & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \\ \hline \end{array}$	V_{CC}	V_{IH} or $V_{I L}$
$\Delta \mathrm{R}_{\mathrm{ON}}$	maximum $\Delta \mathrm{ON}$ resistance between any two channels		- 9 8 6						$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$		V_{CC} to V_{EE}	V_{IH} or VIL

Notes to DC characteristics

1. At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V the analog switch ON -resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig.8.

Triple 2-channel analog

 multiplexer/demultiplexer with latch
74HC/HCT4353

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HC								V_{Cc} (V)	V_{EE} (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.7 \end{aligned}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \\ \hline \end{array}$		V	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\begin{array}{\|l\|} \hline 0.8 \\ 2.1 \\ 2.8 \\ 4.3 \end{array}$	$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$		$\begin{array}{\|l} 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$	V	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$			
± 1	input leakage current			$\begin{array}{\|l\|} \hline 0.1 \\ 0.2 \end{array}$		$\begin{aligned} & \hline 1.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $V_{I L}$	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.10) } \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current all channels			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $V_{I L}$	$\begin{aligned} & \left\|V_{S}\right\|= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig.10) } \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or VIL	$\begin{aligned} & \left\|V_{S}\right\|= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig.11) } \end{aligned}$
I_{CC}	quiescent supply current			$\begin{aligned} & \hline 8.0 \\ & 16.0 \end{aligned}$		$\begin{aligned} & \hline 80.0 \\ & 160.0 \end{aligned}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$V_{C C}$ or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{oS}}= \\ & \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \hline \end{aligned}$

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

AC CHARACTERISTICS FOR 74HC
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\text {C }}$)							UNIT	TEST CONDITIONS		
		74HC								V_{Cc} (V)	$\begin{aligned} & V_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $V_{\text {is }} \text { to } V_{\text {os }}$		$\begin{aligned} & \hline 14 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & 8 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}_{1} ; \mathrm{E}_{2}$ to V_{os}		$\begin{array}{\|l\|} \hline 61 \\ 22 \\ 18 \\ 18 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 50 \\ & 43 \\ & 40 \end{aligned}$		$\begin{array}{\|l\|} \hline 315 \\ 63 \\ 54 \\ 50 \\ \hline \end{array}$		$\begin{aligned} & \hline 375 \\ & 75 \\ & 64 \\ & 60 \\ & \hline \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{LE}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 55 \\ & 20 \\ & 16 \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 40 \\ 34 \\ 40 \end{array}$		$\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \\ 50 \end{array}$		$\begin{aligned} & 300 \\ & 60 \\ & 51 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time S_{n} to $\mathrm{V}_{\text {os }}$		$\begin{array}{\|l\|} \hline 61 \\ 22 \\ 18 \\ 17 \end{array}$	$\begin{aligned} & \hline 225 \\ & 45 \\ & 38 \\ & 40 \end{aligned}$		$\begin{array}{\|l\|} \hline 280 \\ 56 \\ 48 \\ 50 \end{array}$		$\begin{aligned} & \hline 340 \\ & 68 \\ & 58 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\bar{E}_{1} ; \mathrm{E}_{2}$ to V_{os}		$\begin{aligned} & \hline 66 \\ & 24 \\ & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & \hline 250 \\ & 50 \\ & 43 \\ & 40 \end{aligned}$		$\begin{array}{\|l\|} \hline 315 \\ 63 \\ 54 \\ 50 \end{array}$		$\begin{aligned} & 375 \\ & 75 \\ & 64 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \text { turn "OFF" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\mathrm{os}} ; \mathrm{LE} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$		$\begin{aligned} & 55 \\ & \hline 20 \\ & 16 \\ & 19 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 40 \\ 34 \\ 40 \end{array}$		$\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \\ 50 \end{array}$		$\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\text {su }}$	set-up time S_{n} to $\overline{\mathrm{LE}}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \\ & 18 \end{aligned}$	$\begin{aligned} & 17 \\ & 6 \\ & 5 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 23 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 27 \end{aligned}$		ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.20) } \end{aligned}$
th	hold time S_{n} to $\overline{\mathrm{LE}}$	$\begin{array}{\|l\|} \hline 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & -6 \\ & -2 \\ & -2 \\ & -3 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$		ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 20 \text {) } \end{aligned}$
tw	$\overline{\mathrm{LE}}$ minimum pulse width HIGH	$\begin{aligned} & \hline 80 \\ & 16 \\ & 14 \\ & 16 \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ 4 \\ 3 \\ 6 \end{array}$		$\begin{array}{\|l\|} \hline 100 \\ 20 \\ 17 \\ 20 \end{array}$		$\begin{array}{\|l\|} \hline 120 \\ 24 \\ 20 \\ 24 \end{array}$		ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.20) } \end{aligned}$

Triple 2-channel analog

 multiplexer/demultiplexer with latch
74HC/HCT4353

DC CHARACTERISTICS FOR 74HCT
Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	Tamb (${ }^{(} \mathrm{C}$)							UNIT	TEST CONDITIONS			
		74HCT								V_{Cc} (V)	V_{EE} (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$			
VIL	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$			
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	0	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or VIL	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \end{aligned}$ Fig. 10
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-statecurrent all channels			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $V_{\text {IL }}$	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { Fig. } 10 \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \left\|V_{\mathrm{S}}\right\|= \\ & V_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \end{aligned}$ $\text { Fig. } 11$
ICC	quiescent supply current			$\begin{aligned} & \hline 8.0 \\ & 16.0 \end{aligned}$		$\begin{array}{\|l\|} \hline 80.0 \\ 160.0 \end{array}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -5.0 \end{aligned}$	$V_{C C}$ or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{os}}= \\ & \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{array}{\|l} 4.5 \\ \text { to } \\ 5.5 \end{array}$	0	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \\ & \mathrm{~V} \end{aligned}$	other inputs at V_{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current ($\Delta \mathrm{I}_{\mathrm{Cc}}$) for a unit load of 1 is given here.

To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\overline{\mathrm{E}}_{1}, \mathrm{E}_{2}$	0.50
$\mathrm{~S}_{\mathrm{n}}$	0.50
LE	1.5

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

AC CHARACTERISTICS FOR 74HCT
$G N D=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS		
		74HCT								$V_{C C}$ (V)	V_{EE} (V)	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $V_{\text {is }} \text { to } V_{o s}$		$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 8 \end{aligned}$		$\begin{aligned} & 15 \\ & 10 \end{aligned}$		$\begin{aligned} & 18 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}_{1}$ to V_{os}		$\begin{aligned} & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \end{aligned}$		$\begin{aligned} & 69 \\ & 56 \end{aligned}$		$\begin{array}{\|l\|} \hline 83 \\ 68 \end{array}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time E_{2} to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$		$\begin{aligned} & 63 \\ & 50 \end{aligned}$		$\begin{aligned} & 75 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{LE}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 21 \\ & 17 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$		$\begin{aligned} & 56 \\ & 50 \end{aligned}$		$\begin{array}{\|l\|} \hline 68 \\ 60 \end{array}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time S_{n} to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 25 \\ & 19 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \end{aligned}$		$\begin{aligned} & 63 \\ & 56 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 68 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{E}}_{1}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 23 \\ & 19 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$		$\begin{aligned} & 63 \\ & 50 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{2} to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 27 \\ & 23 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \end{aligned}$		$\begin{aligned} & 63 \\ & 50 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{LE}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 19 \\ & 19 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time S_{n} to $V_{\text {os }}$		$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 56 \\ & 56 \end{aligned}$		$\begin{array}{\|l\|} \hline 68 \\ 68 \end{array}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {su }}$	set-up time S_{n} to $\overline{\mathrm{LE}}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 7 \\ & 9 \end{aligned}$		$\begin{aligned} & \hline 15 \\ & 19 \end{aligned}$		$\begin{aligned} & 18 \\ & 22 \end{aligned}$		ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.20) } \\ & \hline \end{aligned}$
t_{h}	hold time S_{n} to $\overline{L E}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & -2 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$		ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.20) } \\ & \hline \end{aligned}$
tw	$\overline{\mathrm{LE}}$ minimum pulse width HIGH	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 24 \\ & 24 \end{aligned}$		ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.20) } \end{aligned}$

Triple 2-channel analog

Fig. 8 Test circuit for measuring RoN.

Fig. 9 Typical Ron as a function of input voltage $\mathrm{V}_{\text {is }}$ for $\mathrm{V}_{\text {is }}=0$ to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.

Fig. 10 Test circuit for measuring OFF-state current.

Fig. 11 Test circuit for measuring ON-state current.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	typ.	UNIT	V_{Cc} (V)	$V_{E E}$ (V)	$\begin{gathered} V_{i s(p-p)} \\ (V) \end{gathered}$	CONDITIONS
	sine-wave distortion $f=1 \mathrm{kHz}$	$\begin{aligned} & 0.04 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 14 \text {) } \end{aligned}$
	sine-wave distortion $f=10 \mathrm{kHz}$	$\begin{aligned} & 0.12 \\ & 0.06 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$	$\begin{array}{\|l\|} \hline 2.25 \\ 4.5 \end{array}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 14 \text {) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{aligned} & -50 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{\|l} \hline 2.25 \\ 4.5 \end{array}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Figs } 12 \text { and } 15) \end{aligned}$
	crosstalk between any two switches/ multiplexers	$\begin{aligned} & \hline-60 \\ & -60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{\|l\|} \hline 2.25 \\ 4.5 \end{array}$	$\begin{array}{\|l} -2.25 \\ -4.5 \end{array}$	note 1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Fig. } 16 \text {) } \end{aligned}$
$V_{(p-p)}$	crosstalk voltage between control and any switch (peak-to-peak value)	$\begin{aligned} & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz}\left(\overline{\mathrm{E}}_{1}, \mathrm{E}_{2} \text { or } \mathrm{S}_{\mathrm{n}},\right. \end{aligned}$ square-wave between $V_{C C}$ and GND, $\left.t_{r}=t_{f}=6 \mathrm{~ns}\right)$ (see Fig.17)
$\mathrm{f}_{\text {max }}$	minimum frequency response $(-3 d B)$	$\begin{aligned} & 160 \\ & 170 \end{aligned}$	MHz MHz	$\begin{aligned} & \hline 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	note 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 13 and 14)
$\mathrm{C}_{\text {S }}$	```maximum switch capacitance independent (Y) common (Z)```	$\begin{aligned} & 5 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$				

Notes to the AC characteristics

1. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
2. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

General note

$\mathrm{V}_{\text {is }}$ is the input voltage at an $n Y_{n}$ or $n Z$ terminal, whichever is assigned as an input.
$\mathrm{V}_{\text {os }}$ is the output voltage at an $n Y_{n}$ or $n Z$ terminal, whichever is assigned as an output.

Fig. 12 Typical switch "OFF" signal feed-through as a function of frequency.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; GND $=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 13 Typical frequency response.

Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

(a) = channel ON condition

(b) channel OFF condition.

Fig. 16 Test circuits for measuring crosstalk between any two switches/multiplexers.

The crosstalk is defined as follows (oscilloscope output):

Fig. 17 Test circuit for measuring crosstalk between control and any switch.

Triple 2-channel analog multiplexer/demultiplexer with latch

AC WAVEFORMS

Fig. 18 Waveforms showing the input $\left(\mathrm{V}_{\text {is }}\right)$ to output (V_{os}) propagation delays.

Triple 2-channel analog multiplexer/demultiplexer with latch

74HC/HCT4353

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	$\mathrm{V}_{\text {is }}$
$\mathrm{t}_{\text {PZH }}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	V_{EE}
$\mathrm{t}_{\mathrm{PHZ}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PLZ}}$	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
74 HC	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

$C_{L} \quad=\quad$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T} \quad=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint on t_{r}, t_{f} with 50% duty factor.

Fig. 21 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	$\mathrm{V}_{\text {is }}$
$\mathrm{t}_{\mathrm{PZH}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	V_{EE}
$\mathrm{t}_{\mathrm{PHZ}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PLZ}}$	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
74 HC	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

$C_{L} \quad=\quad$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T} \quad=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 n s ;$ when measuring $f_{\text {max }}$, there is no constraint on t_{r}, t_{f} with 50% duty factor.

Fig. 22 Input pulse definitions.

Triple 2-channel analog

 multiplexer/demultiplexer with latch74HC/HCT4353

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

