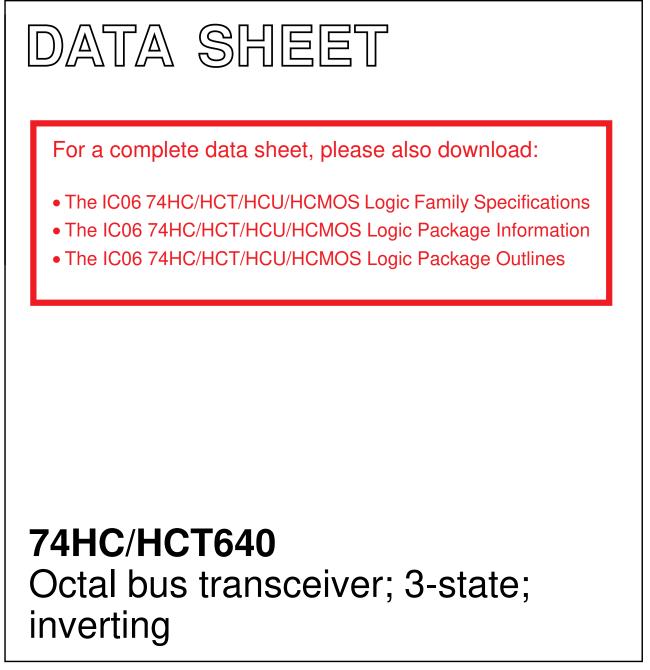
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 March 1988

74HC/HCT640

FEATURES

- Octal bidirectional bus interface
- Inverting 3-state outputs
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT640 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT640 are octal transceivers featuring inverting 3-state bus compatible outputs in both send and receive directions.

The "640" features an output enable (\overline{OE}) input for easy cascading and a send/receive (DIR) for direction control. \overline{OE} controls the outputs so that the buses are effectively isolated. The "640" is similar to the "245" but has inverting outputs.

QUICK REFERENCE DATA

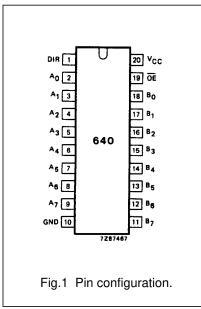
GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

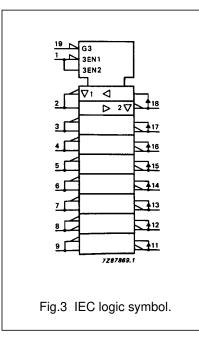
SYMBOL	PARAMETER	CONDITIONS	TYF	PICAL	UNIT	
STMBOL		CONDITIONS	нс	нст		
tphl/tplh	propagation delay A_n to B_n ; B_n to A_n	C _L = 15 pF; V _{CC} = 5 V	9	9	ns	
CI	input capacitance		3.5	3.5	pF	
CI/O	input/output capacitance		10	10	pF	
C _{PD}	power dissipation capacitance per transceiver	notes 1 and 2	35	35	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

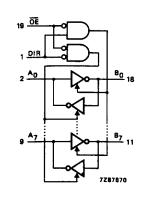

- f_i = input frequency in MHz
- $f_o = output frequency in MHz$
- $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$
- C_L = output load capacitance in pF
- V_{CC} = supply voltage in V
- 2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} 1.5 V

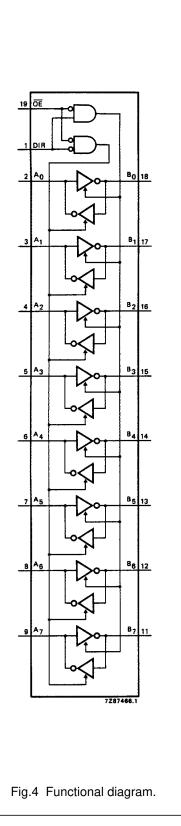

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1	DIR	direction control					
2, 3, 4, 5, 6, 7, 8, 9	A ₀ to A ₇	data inputs/outputs					
10	GND	ground (0 V)					
18, 17, 16, 15, 14, 13, 12, 11	B ₀ to B ₇	data inputs/outputs					
19	OE	output enable input (active LOW)					
20	V _{CC}	positive supply voltage					




Fig.2 Logic symbol.

FUNCTION TABLE

in	outs	inputs/outputs					
OE	DIR	An	B _n				
L	L	A=B	inputs				
L	Н	inputs	B=A				
Н	Х	Z	Z				

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

74HC/HCT640

74HC/HCT640

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(•)	
t _{PHL} / t _{PLH}	propagation delay A_n to B_n ; B_n to A_n		30 11 9	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.5
t _{PZH} / t _{PZL}	$\begin{array}{l} 3 \text{-state output enable time} \\ \overline{OE}, \text{ DIR to } A_n; \\ \overline{OE}, \text{ DIR to } B_n \end{array}$		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PHZ} / t _{PLZ}	$\begin{array}{l} 3\text{-state output disable time} \\ \overline{OE}, \text{ DIR to } A_n; \\ \overline{OE}, \text{ DIR to } B_n \end{array}$		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.5

74HC/HCT640

DC CHARACTERISTICS FOR 74HCT

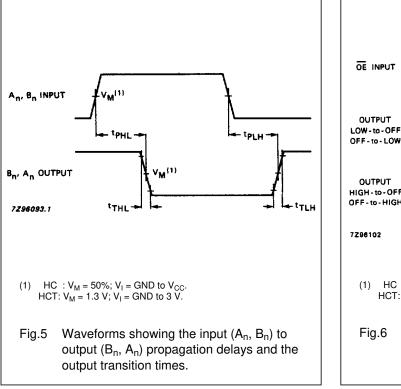
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

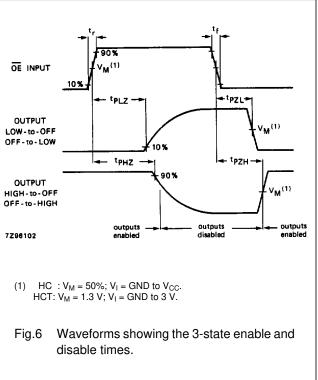
Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
A _n	1.50						
B _n	1.50						
	1.50						
DIR	0.90						


AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.]	(.,	
t _{PHL} / t _{PLH}	propagation delay A _n to B _n ; B _n to A _n		11	22		28		33	ns	4.5	Fig.5
t _{PZH} / t _{PZL}	$\begin{array}{l} \mbox{3-state output enable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		18	30		38		45	ns	4.5	Fig.6
t _{PHZ} / t _{PLZ}	$\begin{array}{l} \mbox{3-state output disable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		19	30		38		45	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.5

74HC/HCT640

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".