

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT646 Octal bus transceiver/register; 3-state

Product specification
File under Integrated Circuits, IC06

September 1993

74HC/HCT646

FEATURES

- Independent register for A and B buses
- · Multiplexed real-time and stored data
- · Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT646 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT646 consist of bus transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the internal registers. Data on the "A" or "B" bus will be

clocked into the registers as the appropriate clock (CP_{AB} and CP_{BA}) goes to a HIGH logic level. Output enable (\overline{OE}) and direction (DIR) inputs are provided to control the transceiver function. In the transceiver mode, data present at the high-impedance port may be stored in either the "A" or "B" register, or in both. The select source inputs (S_{AB} and S_{BA}) can multiplex stored and real-time (transparent mode) data. The direction (DIR) input determines which bus will receive data when \overline{OE} is active (LOW). In the isolation mode (\overline{OE} = HIGH), "A" data may be stored in the "B" register and/or "B" data may be stored in the "A" register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

The "646" is functionally identical to the "648", but has non-inverting data paths.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIVIDOL	PANAMETER	CONDITIONS	НС	нст	ONIT
t _{PHL} / t _{PLH}	propagation delay A _n , B _n to B _n , A _n	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	11	13	ns
f _{max}	maximum clock frequency		69	85	MHz
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per channel	notes 1 and 2	30	33	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz

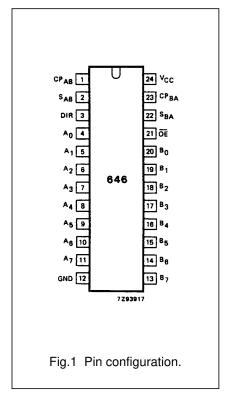
f_o = output frequency in MHz

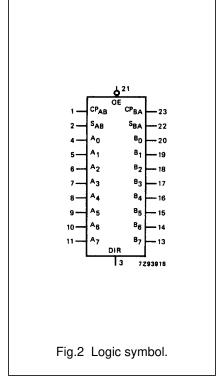
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

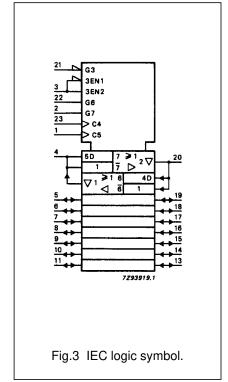
C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

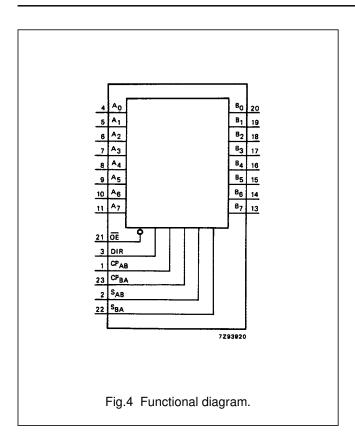

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT646

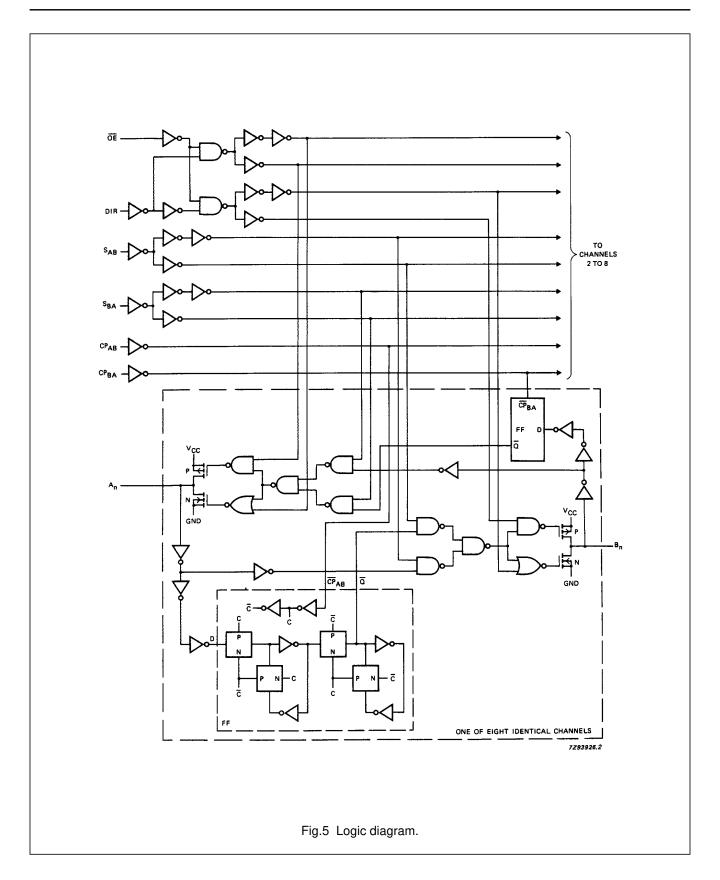
PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	CP _{AB}	A to B clock input (LOW-to-HIGH, edge-triggered)
2	S _{AB}	select A to B source input
3	DIR	direction control input
4, 5, 6, 7, 8, 9, 10, 11	A ₀ to A ₇	A data inputs/outputs
12	GND	ground (0 V)
20, 19, 18, 17, 16, 15, 14, 13	B ₀ to B ₇	B data inputs/outputs
21	ŌĒ	output enable input (active LOW)
22	S _{BA}	select B to A source input
23	CP _{BA}	B to A clock input (LOW-to-HIGH, edge-triggered)
24	V _{CC}	positive supply voltage



Octal bus transceiver/register; 3-state

74HC/HCT646


FUNCTION TABLE

		INPL	JTS ⁽¹⁾			DATA	\ I/O ⁽²⁾	FUNCTION			
ŌĒ	DIR	CP _{AB}	CPBA	S _{AB}	S _{BA}	A ₀ to A ₇	B ₀ to B ₇	L			
H H	X X	H or L ↑	H or L ↑	X X	X X	input	input	isolation store A and B data			
L L	L L	X X	X H or L	X X	L H	output	input	real-time B data to A bus stored B data to A bus			
L L	H H	X H or L	X X	L H	X X	input	output	real-time A data to B bus stored A data to B bus			

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - ↑ = LOW-to-HIGH level transition
- 2. The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled, i.e., data at the bus inputs will be stored on every LOW-to-HIGH transition on the clock inputs.

74HC/HCT646

Octal bus transceiver/register; 3-state

74HC/HCT646

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF$

				-	Γ _{amb} (°	C)				TEST CONDITIONS		
CVMDOL	DADAMETED		74HC									
SYMBOL	PARAMETER	+25			-40 to +85 -40 to +			o +125	UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(•)		
t _{PHL} / t _{PLH}	propagation delay A _n ,B _n to B _n ,A _n		39 14 11	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay CP _{AB} ,CP _{BA} to B _n ,A _n		66 24 19	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay S _{AB} ,S _{BA} to B _n ,A _n		55 20 16	190 38 32		240 48 41		285 57 48	ns	2.0 4.5 6.0	Fig.8	
t _{PZH} / t _{PZL}	3-state output enable time OE to A _n ,B _n		47 17 14	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.9	
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to A_n,B_n		58 21 17	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.9	
t _{PZH} / t _{PZL}	3-state output enable time DIR to A _n ,B _n		50 18 14	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.10	
t _{PHZ} / t _{PLZ}	3-state output disable time DIR to A _n ,B _n		50 18 14	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.10	
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6 and Fig.8	
t _W	clock pulse width HIGH or LOW CP _{AB} or CP _{BA}	80 16 14	25 9 7		100 24 20		120 24 20		ns	2.0 4.5 6.0	Fig.7	
t _{su}	set-up time A _n ,B _n to CP _{AB} ,CP _{BA}	60 12 10	-3 -1 -1		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7	
t _h	hold time A _n ,B _n to CP _{AB} ,CP _{BA}	35 7 6	6 2 2		45 9 8		55 11 9		ns	2.0 4.5 6.0	Fig.7	
f _{max}	maximum clock pulse frequency	6.0 30 35	21 63 75		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.7	

Octal bus transceiver/register; 3-state

74HC/HCT646

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

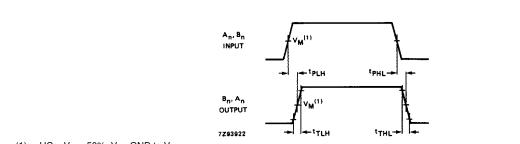
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
S _{AB} , S _{BA}	0.60
A_0 to A_7 and B_0 to B_7	0.75

INPUT	UNIT LOAD COEFFICIENT
CP _{AB} , CP _{BA}	1.50
ŌĒ	1.50
DIR	1.25

Octal bus transceiver/register; 3-state

74HC/HCT646


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$

		T _{amb} (°C)								TES	T CONDITIONS	
SYMBOL	PARAMETER	DAMETED				74HCT						
STWIDOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.]	(*)		
t _{PHL} / t _{PLH}	propagation delay A _n ,B _n to B _n ,A _n		16	30		38		45	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay CP _{AB} ,CP _{BA} to B _n ,A _n		23	44		55		66	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay S _{AB} ,S _{BA} to B _n ,A _n		26	46		58		69	ns	4.5	Fig.8	
t _{PZH} / t _{PZL}	$\frac{\text{3-state output enable time}}{\text{OE}} \text{ to } A_n, B_n$		21	40		50		60	ns	4.5	Fig.9	
t _{PHZ} / t _{PLZ}	$\frac{\text{3-state output disable time}}{\text{OE}} \text{ to } A_n, B_n$		20	35		44		53	ns	4.5	Fig.9	
t _{PZH} / t _{PZL}	3-state output enable time DIR to A_n, B_n		21	40		50		60	ns	4.5	Fig.10	
t _{PHZ} / t _{PLZ}	3-state output disable time DIR to A _n ,B _n		21	35		44		53	ns	4.5	Fig.10	
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6 and Fig.8	
t _W	clock pulse width HIGH or LOW CP _{AB} or CP _{BA}	16	8		20		24		ns	4.5	Fig.7	
t _{su}	set-up time A _n ,B _n to CP _{AB} ,CP _{BA}	12	3		15		18		ns	4.5	Fig.7	
t _h	hold time A _n ,B _n to CP _{AB} ,CP _{BA}	5	1		5		5		ns	4.5	Fig.7	
f _{max}	maximum clock pulse frequency	30	77		24		20		MHz	4.5	Fig.7	

74HC/HCT646

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig. 6 Waveforms showing the input A_n , B_n to output B_n , A_n propagation delays and the output transition times.

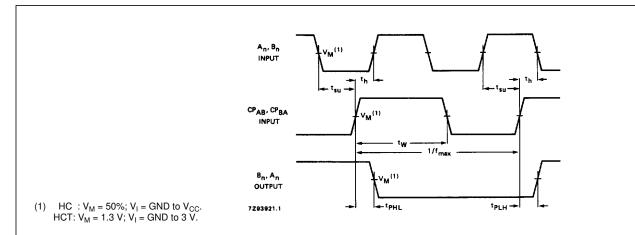


Fig.7 Waveforms showing the A_n,B_n to CP_{AB}, CP_{BA} set-up and hold times, clock CP_{AB},CP_{BA} pulse width, maximum clock pulse frequency and the CP_{AB},CP_{BA} to output B_n,A_n propagation delays.

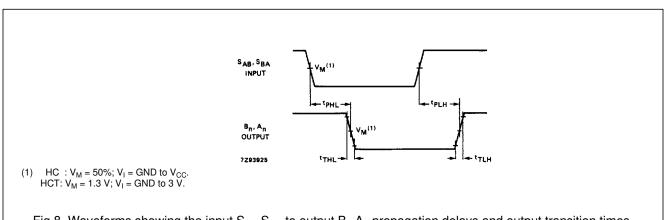
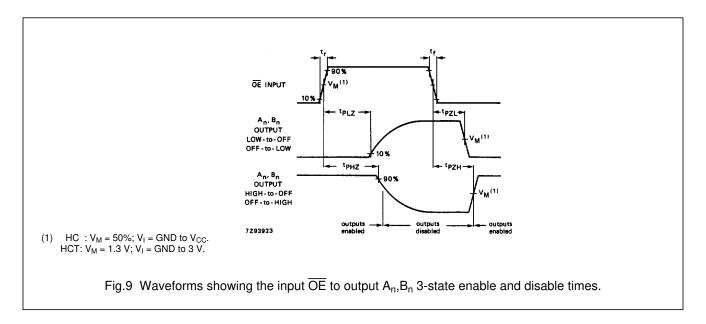
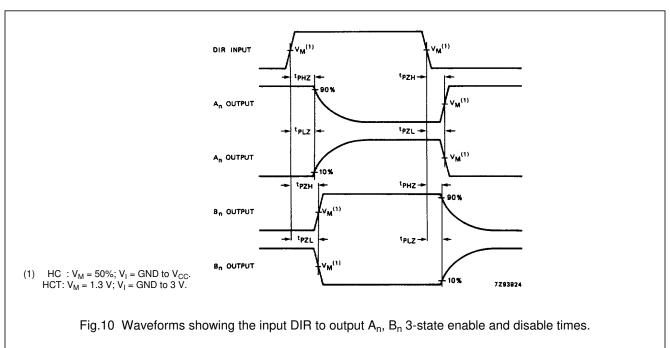
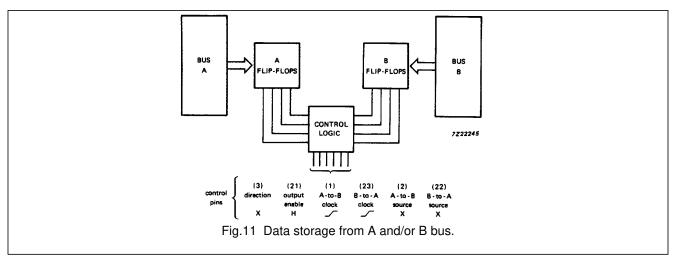
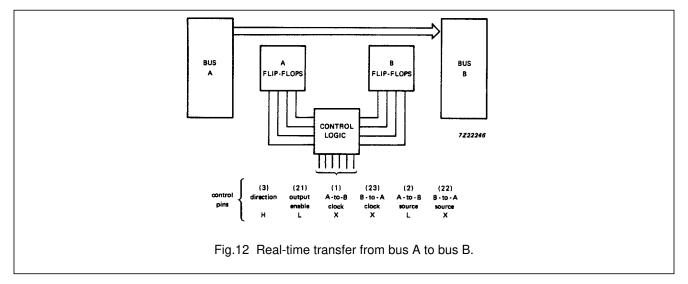
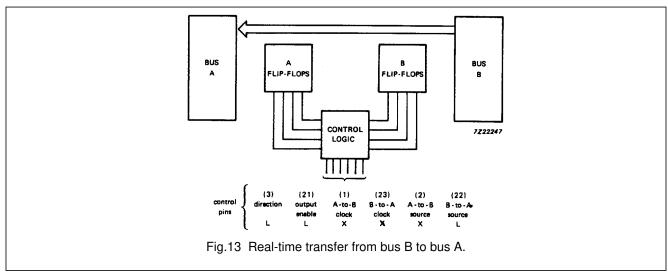




Fig.8 Waveforms showing the input S_{AB} , S_{BA} to output B_n , A_n propagation delays and output transition times.

Octal bus transceiver/register; 3-state


74HC/HCT646





74HC/HCT646

APPLICATION INFORMATION

Octal bus transceiver/register; 3-state

74HC/HCT646

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".