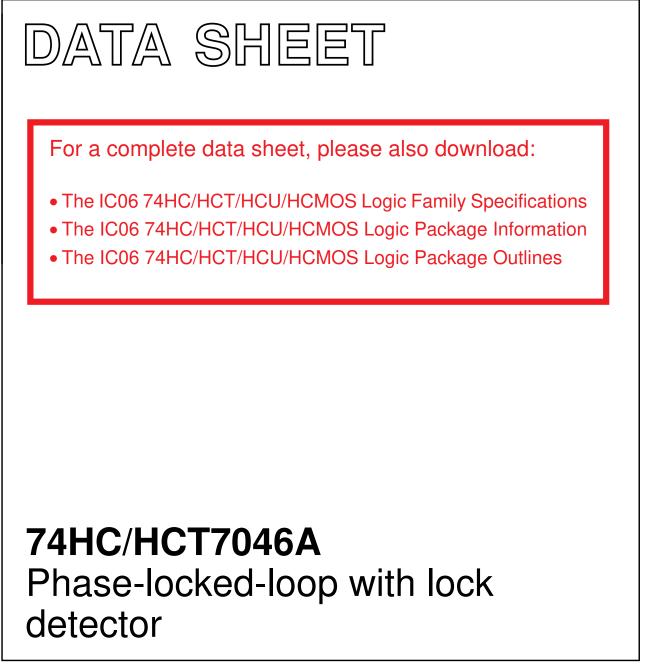
mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

FEATURES

- Low power consumption
- Centre frequency up to 17 MHz (typ.) at V_{CC} = 4.5 V
- Choice of two phase comparators: EXCLUSIVE-OR; edge-triggered JK flip-flop;
- Excellent VCO frequency linearity
- VCO-inhibit control for ON/OFF keying and for low standby power consumption
- Minimal frequency drift
- Operation power supply voltage range: VCO section 3.0 to 6.0 V digital section 2.0 to 6.0 V
- Zero voltage offset due to op-amp buffering
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT7046 are high-speed Si-gate CMOS devices and are specified in compliance with JEDEC standard no. 7.

The 74HC/HCT7046 are phase-locked-loop circuits that comprise a linear voltage-controlled oscillator (VCO) and two different phase comparators (PC1 and PC2) with a common signal input amplifier and a common comparator input.

A lock detector is provided and this gives a HIGH level at pin 1 (LD) when the PLL is locked. The lock detector capacitor must be connected between pin 15 (C_{LD}) and pin 8 (GND). The value of the C_{LD} capacitor can be determined, using information supplied in Fig.32. The input signal can be directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. A self-bias input circuit keeps small voltage signals within the linear region of the input amplifiers. With a passive low-pass filter, the "7046" forms a second-order loop PLL. The excellent VCO linearity is achieved by the use of linear op-amp techniques.

vco

The VCO requires one external capacitor C1 (between $C1_A$ and $C1_B$) and one external resistor R1 (between R_1 and GND) or two external resistors R1 and R2 (between R_1 and GND, and R_2 and GND). Resistor R1 and capacitor C1 determine the frequency range of the VCO. Resistor R2 enables the VCO to have a frequency offset if required.

The high input impedance of the VCO simplifies the design of low-pass filters by giving the designer a wide choice of resistor/capacitor ranges. In order not to load the low-pass filter, a demodulator output of the VCO input voltage is provided at pin 10 (DEM_{OUT}). In contrast to conventional techniques where the DEMOUT voltage is one threshold voltage lower than the VCO input voltage, here the DEM_{OUT} voltage equals that of the VCO input. If DEM_{OUT} is used, a load resistor (R_S) should be connected from DEM_{OUT} to GND; if unused, DEMOUT should be left open. The VCO output (VCO_{OUT}) can be connected directly to the comparator input (COMPIN), or connected via a frequency-divider. The VCO output signal has a duty factor of 50% (maximum expected deviation 1%), if the VCO input is held at a constant DC level. A LOW level at the inhibit input (INH) enables the VCO and demodulator, while a HIGH level turns both off to minimize standby power consumption.

The only difference between the HC and HCT versions is the input level specification of the INH input. This input disables the VCO section. The comparators' sections are identical, so that there is no difference in the

74HC/HCT7046A

 SIG_{IN} (pin 14) or COMP_{IN} (pin 3) inputs between the HC and HCT versions.

Phase comparators

The signal input (SIG_{IN}) can be directly coupled to the self-biasing amplifier at pin 14, provided that the signal swing is between the standard HC family input logic levels. Capacitive coupling is required for signals with smaller swings.

Phase comparator 1 (PC1)

This is an EXCLUSIVE-OR network. The signal and comparator input frequencies (f_i) must have a 50% duty factor to obtain the maximum locking range. The transfer characteristic of PC1, assuming ripple ($f_r = 2f_i$) is suppressed, is:

$$V_{\text{DEMOUT}} = \frac{V_{\text{CC}}}{\pi} (\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}})$$

where V_{DEMOUT} is the demodulator output at pin 10;

 $V_{DEMOUT} = V_{PC1OUT}$ (via low-pass filter).

The phase comparator gain is:

$$K_{p} = \frac{V_{CC}}{\pi} (V/r).$$

The average output voltage from PC1, fed to the VCO input via the low-pass filter and seen at the demodulator output at pin 10 (V_{DEMOUT}), is the resultant of the phase differences of signals (SIG_{IN}) and the comparator input (COMP_{IN}) as shown in Fig.6. The average of V_{DEMOUT} is equal to 1/2 V_{CC} when there is no signal or noise at SIG_{IN} and with this input the VCO oscillates at the centre frequency (f_0). Typical

waveforms for the PC1 loop locked at $f_{\rm o}$ are shown in Fig.7.

The frequency capture range $(2f_c)$ is defined as the frequency range of input signals on which the PLL will lock if it was initially out-of-lock. The frequency lock range $(2f_L)$ is defined as the frequency range of input signals on which the loop will stay locked if it was initially in lock. The capture range is smaller or equal to the lock range.

With PC1, the capture range depends on the low-pass filter characteristics and can be made as large as the lock range. This configuration retains lock even with very noisy input signals. Typical behaviour of this type of phase comparator is that it can lock to input frequencies close to the harmonics of the VCO centre frequency.

Phase comparator 2 (PC2)

This is a positive edge-triggered phase and frequency detector. When the PLL is using this comparator, the loop is controlled by positive signal transitions and the duty factors of SIG_{IN} and COMP_{IN} are not important. PC2 comprises two D-type flip-flops, control-gating and a 3-state output stage. The circuit functions as an up-down counter (Fig.5) where SIG_{IN} causes an up-count and COMP_{IN} a down-count. The transfer function of PC2, assuming ripple ($f_r = f_i$) is suppressed, is:

$$V_{\text{DEMOUT}} = \frac{V_{\text{CC}}}{4\pi} \left(\phi_{\text{SIGIN}} - \phi_{\text{COMPIN}} \right)$$

where V_{DEMOUT} is the demodulator output at pin 10;

 $V_{DEMOUT} = V_{PC2OUT}$ (via low-pass filter).

The phase comparator gain is:

$$\mathsf{K}_{\mathsf{p}} = \frac{\mathsf{V}_{\mathsf{CC}}}{4\pi} \, (\mathsf{V}/\mathsf{r}) \, .$$

 $\label{eq:V_DEMOUT} \begin{array}{l} \text{V}_{\text{DEMOUT}} \text{ is the resultant of the initial} \\ \text{phase differences of SIG}_{\text{IN}} \text{ and} \\ \text{COMP}_{\text{IN}} \text{ as shown in Fig.8. Typical} \\ \text{waveforms for the PC2 loop locked at} \\ f_{\text{o}} \text{ are shown in Fig.9.} \end{array}$

When the frequencies of SIG_{IN} and COMP_{IN} are equal but the phase of SIG_{IN} leads that of COMP_{IN}, the p-type output driver at PC2_{OUT} is held "ON" for a time corresponding to the phase difference (ϕ_{DEMOUT}). When the phase of SIG_{IN} lags that of COMP_{IN}, the n-type driver is held "ON".

When the frequency of SIG_{IN} is higher than that of COMP_{IN}, the p-type output driver is held "ON" for most of the input signal cycle time, and for the remainder of the cycle both n and p- type drivers are "OFF" (3-state). If the SIG_{IN} frequency is lower than the COMPIN frequency, then it is the n-type driver that is held "ON" for most of the cycle. Subsequently, the voltage at the capacitor (C2) of the low-pass filter connected to PC2_{OUT} varies until the signal and comparator inputs are equal in both phase and frequency. At this stable point the voltage on C2 remains constant as the PC2 output is in 3-state and the VCO input at pin 9 is a high impedance.

Thus, for PC2, no phase difference exists between SIG_{IN} and $COMP_{IN}$ over the full frequency range of the VCO. Moreover, the power dissipation due to the low-pass filter is reduced because both p and n-type drivers are "OFF" for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range and is independent of the low-pass filter. With no signal present at SIG_{IN} the VCO adjusts, via PC2, to its lowest frequency.

APPLICATIONS

- FM modulation and demodulation
- Frequency synthesis and multiplication
- Frequency discrimination
- Tone decoding
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Motor-speed control

74HC/HCT7046A

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C;$

SYMBOL	PARAMETER	CONDITIONS	ТҮР		
STWDOL		CONDITIONS	НС	нст	
f _o	VCO centre frequency	C1 = 40 pF; R1 = 3 k Ω ; V _{CC} = 5 V	19	19	MHz
CI	input capacitance (pin 5)		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	24	24	pF

Notes

- Applies to the phase comparator section only (VCO disabled). For power dissipation of VCO and demodulator sections see Figs 20, 21 and 22.
- 2. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

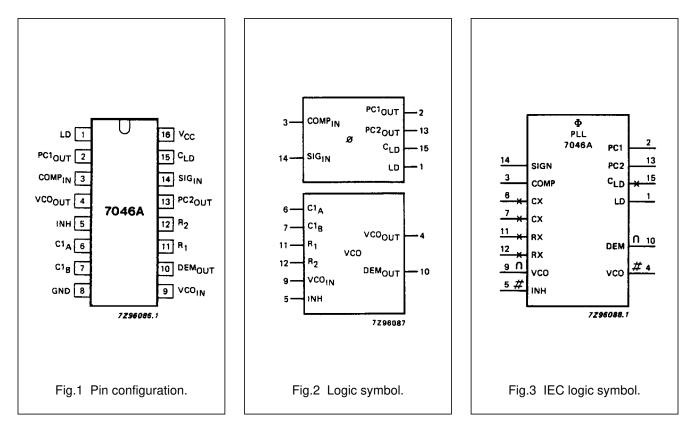
 $P_{D} = C_{PD} \times V_{CC}{}^{2} \times f_{i} + \Sigma \; (C_{L} \times V_{CC}{}^{2} \times f_{o})$ where:

 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

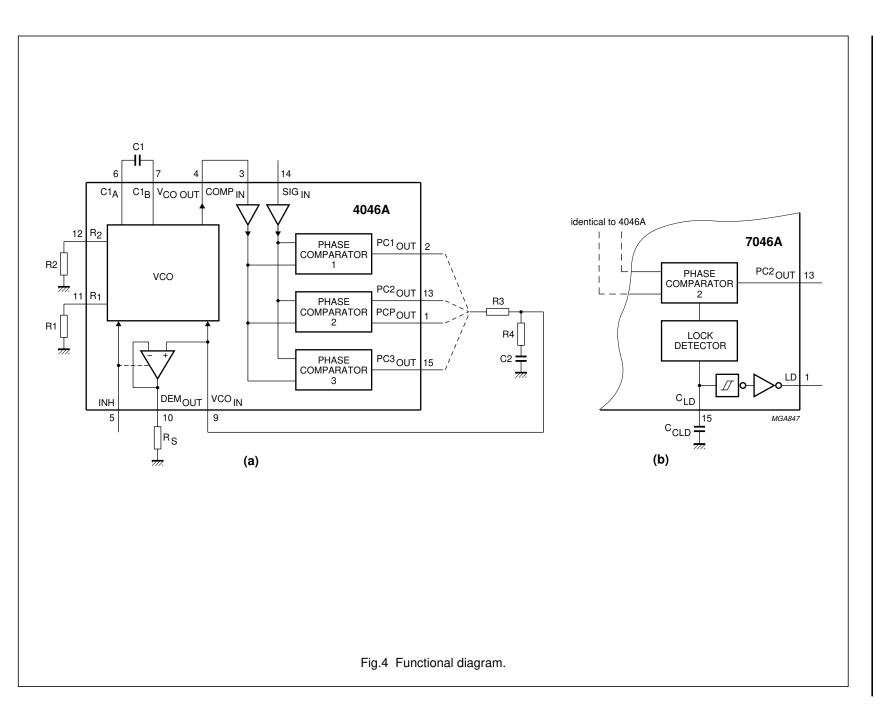
 C_L = output load capacitance in pF

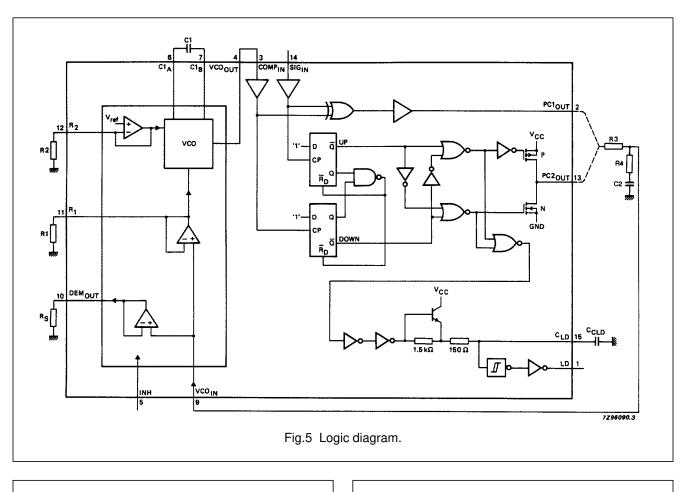

 V_{CC} = supply voltage in V

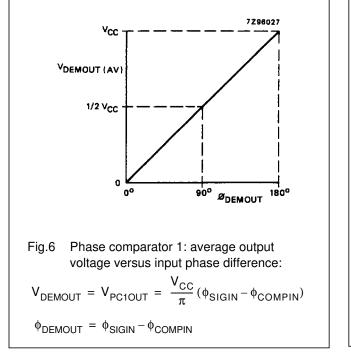
ORDERING INFORMATION

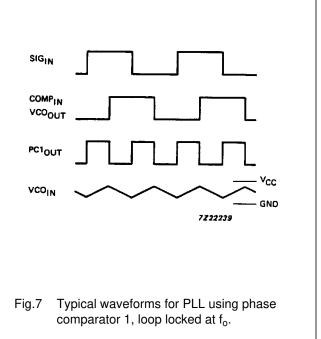
See "74HC/HCT/HCU/HCMOS Logic Package Information".

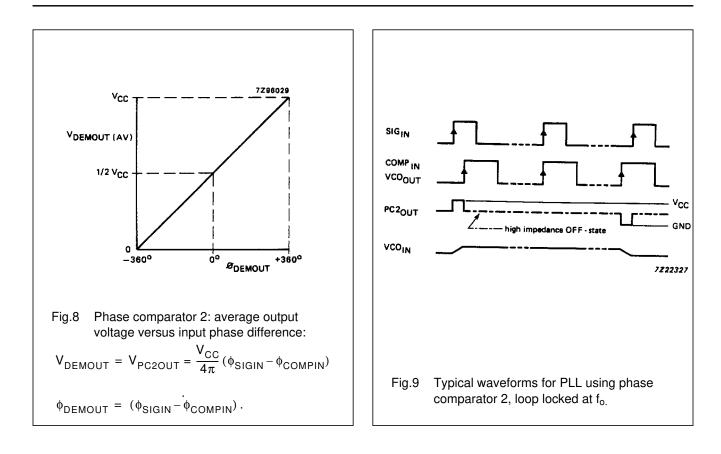
PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1	LD	lock detector output (active HIGH)
2	PC1 _{OUT}	phase comparator 1 output
3	COMPIN	comparator input
4	VCO _{OUT}	VCO output
5	INH	inhibit input
6	C1 _A	capacitor C1 connection A
7	C1 _B	capacitor C1 connection B
8	GND	ground (0 V)
9	VCOIN	VCO input
10	DEMOUT	demodulator output
11	R ₁	resistor R1 connection
12	R ₂	resistor R2 connection
13	PC2 _{OUT}	phase comparator 2 output
14	SIG _{IN}	signal input
15	C _{LD}	lock detector capacitor input
16	V _{CC}	positive supply voltage






Product specification



74HC/HCT7046A

RECOMMENDED OPERATING CONDITIONS FOR 74HC/HCT

CYMPOL	PARAMETER		74HC	;		74HC	Г		CONDITIONS
SYMBOL		min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	3.0	5.0	6.0	4.5	5.0	5.5	V	
V _{CC}	DC supply voltage if VCO section is not used	2.0	5.0	6.0	4.5	5.0	5.5	V	
VI	DC input voltage range	0		V _{CC}	0		V _{CC}	V	
Vo	DC output voltage range	0		V _{CC}	0		V _{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTER- ISTICS
t _r , t _f	input rise and fall times (pin 5)		6.0	1000 500 400		6.0	500	ns	$V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+7	V	
±I _{IK}	DC input diode current		20	mA	for $V_I < -0.5$ V or $V_I > V_{CC} + 0.5$ V
±І _{ОК}	DC output diode current		20	mA	for $V_O{<}{-}0.5$ V or $V_O{>}V_{CC}{+}0.5$ V
±l _O	DC output source or sink current		25	mA	for $-0.5 \text{ V} < V_O < V_{CC} + 0.5 \text{ V}$
±I _{CC} ; ±I _{GND}	DC V_{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K

74HC/HCT7046A

DC CHARACTERISTICS FOR 74HC

Quiescent supply current

Voltages are referenced to GND (ground = 0 V)

				1	Г _{ать} (°			TEST CONDITIONS			
SYMBOL					74HC						
STNIDUL	PARAMETER		+25		- 40 t	to +85	_40 t	o +125	UNIT	V _{CC} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.			
Icc	quiescent supply current (VCO disabled)			8.0		80.0		160.0	μA	6.0	pins 3, 5, and 14 at V_{CC} ; pin 9 at GND; I _I at pins 3 and 14 to be excluded

74HC/HCT7046A

Product specification

Phase comparator section

Voltages are referenced to GND (ground = 0 V)

				-	Г _{ать} (°			TE	ST CO	NDITIONS		
SYMBOL	PARAMETER				74HC	;						
STMBUL	PARAMETER		+25		-40 1	o +85	_40 t	o +125		V _{CC} (V)	VI	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
V _{IH}	DC coupled HIGH level input voltage SIG _{IN} , COMP _{IN}	1.5 3.15 4.2	1.2 2.4 3.2		1.5 3.15 4.2		1.5 3.15 4.2		v	2.0 4.5 6.0		
V _{IL}	DC coupled LOW level input voltage SIG _{IN} , COMP _{IN}		0.8 2.1 2.8	0.5 1.35 1.8		0.5 1.35 1.8		0.5 1.35 1.8	v	2.0 4.5 6.0		
V _{OH}	HIGH level output voltage LD, PC _{nOUT}	1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		1.9 4.4 5.9		v	2.0 4.5 6.0	V _{IH} or V _{IL}	$-I_{O} = 20 \ \mu A$ $-I_{O} = 20 \ \mu A$ $-I_{O} = 20 \ \mu A$
V _{OH}	HIGH level output voltage LD, PC _{nOUT}	3.98 5.48	4.32 5.81		3.84 5.34		3.7 5.2		v	4.5 6.0	V _{IH} or V _{IL}	$-I_{O} = 4.0 \text{ mA}$ $-I_{O} = 5.2 \text{ mA}$
V _{OL}	LOW level output voltage LD, PC _{nOUT}		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	v	2.0 4.5 6.0	V _{IH} or V _{IL}	$I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$
V _{OL}	LOW level output voltage LD, PC _{nOUT}		0.15 0.16	0.26 0.26		0.33 0.33		0.4 0.4	v	4.5 6.0	V _{IH} or V _{IL}	I _O = 4.0 mA I _O = 5.2 mA
±Ιι	input leakage current SIG _{IN} , COMP _{IN}			3.0 7.0 18.0 30.0		4.0 9.0 23.0 38.0		5.0 11.0 27.0 45.0	μA	2.0 3.0 4.5 6.0	V _{CC} or GND	
±I _{OZ}	3-state OFF-state current PC2 _{OUT}			0.5		5.0		10.0	μA	6.0	V _{IH} or V _{IL}	V _O = V _{CC} or GND
R _I	input resistance SIG _{IN} , COMP _{IN}		800 250 150						kΩ	3.0 4.5 6.0	opera $\Delta V_{I} =$	self-bias ting point; 0.5 V; see 0, 11 and 12

Product specification

74HC/HCT7046A

VCO section

Voltages are referenced to GND (ground = 0 V)

		T _{amb} (°C)							Т	EST C	ONDITIONS	
SYM-					74HC	>			1			
BOL	PARAMETER		+ 25		- 40 t	to +85	-40 t	o +125	UNIT	V _{CC} (V)	V	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(•)		
V _{IH}	HIGH level input voltage INH	2.1 3.15 4.2	1.7 2.4 3.2		2.1 3.15 4.2		2.1 3.15 4.2		v	3.0 4.5 6.0		
V _{IL}	LOW level input voltage INH		1.3 2.1 2.8	0.9 1.35 1.8		0.9 1.35 1.8		0.9 1.35 1.8	v	3.0 4.5 6.0		
V _{OH}	HIGH level output voltage VCO _{OUT}	2.9 4.4 5.9	3.0 4.5 6.0		2.9 4.4 5.9		2.9 4.4 5.9		v	3.0 4.5 6.0	V _{IH} or V _{IL}	-I _O = 20 μA -I _O = 20 μA -I _O = 20 μA
V _{OH}	HIGH level output voltage VCO _{OUT}	3.98 5.48	4.32 5.81		3.84 5.34		3.7 5.2		v	4.5 6.0	V _{IH} or V _{IL}	$-I_{O} = 4.0 \text{ mA}$ $-I_{O} = 5.2 \text{ mA}$
V _{OL}	LOW level output voltage VCO _{OUT}		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	v	3.0 4.5 6.0	V _{IH} or V _{IL}	$I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$ $I_{O} = 20 \ \mu A$
V _{OL}	LOW level output voltage VCO _{OUT}		0.15 0.16	0.26 0.26		0.33 0.33		0.4 0.4	v	4.5 6.0	V _{IH} or V _{IL}	I _O = 4.0 mA I _O = 5.2 mA
V _{OL}	LOW level output voltage C1 _A , C1 _B (test purposes only)			0.40 0.40		0.47 0.47		0.54 0.54	v	4.5 6.0	V _{IH} or V _{IL}	l _O = 4.0 mA l _O = 5.2 mA
±lı	input leakage current INH, VCO _{IN}			0.1		1.0		1.0	μA	6.0	V _{CC} or GND	
R1	resistor range	3.0 3.0 3.0		300 300 300					kΩ	3.0 4.5 6.0		note 1
R2	resistor range	3.0 3.0 3.0		300 300 300					kΩ	3.0 4.5 6.0		note 1
C1	capacitor range	40 40 40		no limit					pF	3.0 4.5 6.0		
V _{VCOIN}	operating voltage range at VCO _{IN}	1.1 1.1 1.1		1.9 3.4 4.9					v	3.0 4.5 6.0		over the range specified for R1; for linearity see Figs 18 and 19.

Note

1. The parallel value of R1 and R2 should be more than 2.7 k Ω . Optimum performance is achieved when R1 and/or R2 are/is > 10 k Ω .

Product specification

74HC/HCT7046A

Demodulator section

Voltages are referenced to GND (ground = 0 V)

				Т	_{amb} (°C	C)				TES	T CONDITIONS
SYMBOL	PARAMETER				74HC						
STMBOL		+25			-40 to +85 -40 to			o +125		V _{CC} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-)	
R _S	resistor range	50 50 50		300 300 300					kΩ	3.0 4.5 6.0	at $R_S > 300 \text{ k}\Omega$ the leakage current can influence V_{DEMOUT}
V _{OFF}	offset voltage VCO _{IN} to V _{DEMOUT}		±30 ±20 ±10						mV	3.0 4.5 6.0	$V_{I} = V_{VCOIN} = 1/2 V_{CC};$ values taken over R _S range; see Fig.13
R _D	dynamic output resistance at DEM _{OUT}		25 25 25						Ω	3.0 4.5 6.0	V _{DEMOUT} = 1/2 V _{CC}

74HC/HCT7046A

AC CHARACTERISTICS FOR 74HC

Phase comparator section

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				Т	amb (°C	C)				TEST	CONDITIONS
SYMBOL	PARAMETER				74HC						
STMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(.,	
t _{PHL} / t _{PLH}	propagation delay SIG _{IN} , COMP _{IN} to PC1 _{OUT}		58 21 17	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.14
t _{PZH} / t _{PZL}	3-state output enable time SIG _{IN} , COMP _{IN} to $PC2_{OUT}$		74 27 22	280 56 48		350 70 60		420 84 71	ns	2.0 4.5 6.0	Fig.15
t _{PHZ} / t _{PLZ}	3-state output disable time SIG _{IN} , COMP _{IN} to PC2 _{OUT}		96 35 28	325 65 55		405 81 69		490 98 83	ns	2.0 4.5 6.0	Fig.15
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.14
V _{I(p-p)}	AC coupled input sensitivity (peak-to-peak value) at SIG _{IN} or COMP _{IN}		9 11 15 33						mV	2.0 3.0 4.5 6.0	f _i = 1 MHz

VCO section

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				Т	amb (°C	C)				TEST CONDITIONS			
SYM-					74HC								
BOL	PARAMETER		+25		–40 t	o +85		40 ⊦125	UNIT	V _{CC} (V)	OTHER		
		min.	typ.	max.	typ.	max.	min.	max.					
Δf/T	frequency stability with temperature change				0.20 0.15 0.14				%/K	3.0 4.5 6.0			
f _o	VCO centre frequency (duty factor = 50%)	7.0 11.0 13.0	10.0 17.0 21.0						MHz	3.0 4.5 6.0	$V_{VCOIN} = 1/2 V_{CC};$ R1 = 3 k Ω ; R2 = ∞ ; C1 = 40 pF; see Fig.17		
Δf_{VCO}	VCO frequency linearity		1.0 0.4 0.3						%	3.0 4.5 6.0	R1 = 100 kΩ; R2 = ∞ ; C1 = 100 pF; see Figs 18 and 19		
δ _{VCO}	duty factor at VCO _{OUT}		50 50 50						%	3.0 4.5 6.0			

74HC/HCT7046A

DC CHARACTERISTICS FOR 74HCT

Quiescent supply current

Voltages are referenced to GND (ground = 0 V)

				1	「amb(°	C)				TES	ST CONDITIONS
SYMBOL	PARAMETER		74HCT								
STNIBUL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-)	
I _{CC}	quiescent supply current (VCO disabled)			8.0		80.0		160.0	μA	6.0	pins 3, 5 and 14 at V_{CC} ; pin 9 at GND; I _I at pins 3 and 14 to be excluded
ΔI _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1) $V_I = V_{CC} - 2.1 V$		100	360		450		490	μA	4.5 to 5.5	pins 3 and 14 at V_{CC} ; pin 9 at GND; I _I at pins 3 and 14 to be excluded

Note

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given above. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
INH	1.00

74HC/HCT7046A

Phase comparator section

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (° C)				TEST CONDITIO		
SYM	PARAMETER				74HC	т				V		
BOL			+25		_40 t	o +85	-40 t	o +125		V _{CC} (V)	VI	OTHER
		min.	typ.	max	min.	max.	min.	max.				
V _{IH}	DC coupled HIGH level input voltage SIG _{IN} , COMP _{IN}	3.15	2.4						v	4.5		
V _{IL}	DC coupled LOW level input voltage SIG _{IN} , COMP _{IN}		2.1	1.35					v	4.5		
V _{OH}	HIGH level output voltage LD, PC _{nOUT}	4.4	4.5		4.4		4.4		v	4.5	V _{IH} or V _{IL}	$-I_O = 20 \ \mu A$
V _{OH}	HIGH level output voltage LD, PC _{nOUT}	3.98	4.32		3.84		3.7		v	4.5	V _{IH} or V _{IL}	$-I_{O} = 4.0 \text{ mA}$
V _{OL}	LOW level output voltage LD, PC _{nOUT}		0	0.1		0.1		0.1	v	4.5	V _{IH} or V _{IL}	I _O = 20 μA
V _{OL}	LOW level output voltage LD, PC _{nOUT}		0.15	0.26		0.33		0.4	v	4.5	V _{IH} or V _{IL}	I _O = 4.0 mA
±lı	input leakage current SIG _{IN} , COMP _{IN}			30		38		45	μA	5.5	V _{CC} or GND	
±I _{OZ}	3-state OFF-state current PC2 _{OUT}			0.5		5.0		10.0	μA	5.5	V _{IH} or V _{IL}	V _O = V _{CC} or GND
RI	input resistance SIG _{IN} , COMP _{IN}		250						kΩ	4.5 $V_{I} \text{ at self-bias} \\ \text{operating point;} \\ \Delta V_{I} = 0.5 \text{ V; see Fig} \\ 10, 11 \text{ and } 12 \end{array}$		ting point; 0.5 V; see Figs

74HC/HCT7046A

DC CHARACTERISTICS FOR 74HCT

VCO section

Voltages are referenced to GND (ground = 0 V)

				•	T _{amb} (°	° C)	-		TEST CONDITIONS				
					74HC	т			l				
SYMBOL	PARAMETER		+25		-40 1	to +85	_40 t	o +125	UNIT	V _{CC} (V)	VI		CONDITIONS OTHER $-I_0 = 20 \mu A$ $-I_0 = 4.0 mA$ $I_0 = 20 \mu A$ $I_0 = 4.0 mA$ $I_0 = 4.0 mA$ $I_0 = 4.0 mA$
		min.	typ.	max.	min.	max.	min.	max.		(*)			
V _{IH}	HIGH level input voltage INH	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage INH		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
V _{OH}	HIGH level output voltage VCO _{OUT}	4.4	4.5		4.4		4.4		V	4.5	V _{IH} or V _{IL}	-l _O = 20 μA	
V _{OH}	HIGH level output voltage VCO _{OUT}	3.98	4.32		3.84		3.7		V	4.5	V _{IH} or V _{IL}	-I _O = 4.0 mA	
V _{OL}	LOW level output voltage VCO _{OUT}		0	0.1		0.1		0.1	V	4.5	V _{IH} or V _{IL}	l _O = 20 μA	
V _{OL}	LOW level output voltage VCO _{OUT}		0.15	0.26		0.33		0.4	V	4.5	V _{IH} or V _{IL}	l _O = 4.0 mA	
V _{OL}	LOW level output voltage $C1_A$, $C1_B$ (test purposes only)			0.40		0.47		0.54	V	4.5	V _{IH} or V _{IL}	l _O = 4.0 mA	
±lı	input leakage current INH, VCO _{IN}			0.1		1.0		1.0	μA	5.5	V _{CC} or GND		
R1	resistor range	3.0		300					kΩ	4.5		note 1	
R2	resistor range	3.0		300					kΩ	4.5		note 1	
C1	capacitor range	40		no limit					pF	4.5			
V _{VCOIN}	operating voltage range at VCO _{IN}	1.1		3.4					V	4.5		over the range specified for R1; for linearity see Figs 18 and 19.	

Note

1. The parallel value of R1 and R2 should be more than 2.7 k Ω . Optimum performance is achieved when R1 and/or R2 are/is > 10 k Ω .

Product specification

74HC/HCT7046A

Demodulator section

Voltages are referenced to GND (ground = 0 V)

SYMBOL		T _{amb} (°C) TEST							EST CONDITIONS			
	PARAMETER				74HC1	ſ			UNIT			
STWIDOL	FARAMETER		+25		–40 t	o +85	-40 t	o +125		V _{CC} (V)	V _{CC}	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
R _S	resistor range	50		300					kΩ	4.5	at $R_S > 300 \text{ k}\Omega$ the leakage current can influence V_{DEMOUT}	
V _{OFF}	offset voltage VCO _{IN} to V _{DEMOUT}		±20						mV	4.5	$\label{eq:VI} \begin{array}{l} V_I = V_{VCOIN} = 1/2 \\ V_{CC}; \mbox{ values taken} \\ \mbox{ over } R_S \mbox{ range}; \\ \mbox{ see Fig.13} \end{array}$	
R _D	dynamic output resistance at DEM _{OUT}		25						Ω	4.5	$V_{\text{DEMOUT}} = 1/2 V_{\text{CC}}$	

AC CHARACTERISTICS FOR 74HCT

Phase comparator section

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)						TEST CONDITIONS						
SYMBOL	PARAMETER				74HC	т			UNIT					
			+ 25		-40	to +85	-40 t	o +125		V _{CC} (V)				
		min.	typ.	max.	min.	max.	min.	max.						
t _{PHL} / t _{PLH}	propagation delay SIG _{IN} , COMP _{IN} to PC1 _{OUT}		21	40		50		60	ns	4.5	Fig.14			
t _{PZH} / t _{PZL}	3-state output enable time SIG _{IN} , COMP _{IN} to PC2 _{OUT}		27	56		70		84	ns	4.5	Fig.15			
t _{PHZ} / t _{PLZ}	3-state output disable time SIG _{IN} , COMP _{IN} to PC2 _{OUT}		35	65		81		98	ns	4.5	Fig.15			
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.14			
V _{I(p-p)}	AC coupled input sensitivity (peak-to-peak value) at SIG _{IN} or COMP _{IN}		15						mV	4.5	f _i = 1 MHz			

74HC/HCT7046A

VCO section

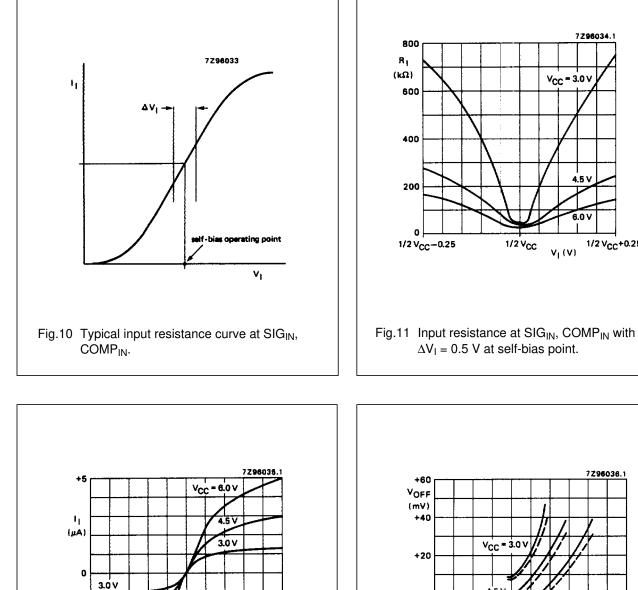
GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$

SYMBOL				Г	amb (°		TEST CONDITIONS				
	PARAMETER	74HCT									
STMBUL			+25		-40 t	to +85	-40 te	o +125	UNIT	V _{CC} (V)	OTHER
		min.	typ.	max.	typ.	max.	min.	max.		(-)	
Δf/T	frequency stability with temperature change				0.15				%/K	4.5	$V_{I} = V_{COIN} \text{ within}$ recommended range; R1 = 100 k Ω ; R2 = ∞ ; C1 = 100 pf; see Fig.16b
f _o	VCO centre frequency (duty factor = 50%)	11.0	17.0						MHz	4.5	$\begin{array}{l} V_{VCOIN} = 1/2 \; V_{CC}; \\ R1 = 3 \; k\Omega; R2 = \infty; \\ C1 = 40 \; pF; \\ see \; Fig. 17 \end{array}$
Δf _{VCO}	VCO frequency linearity		0.4						%	4.5	R1 = 100 kΩ; R2 = ∞ ; C1 = 100 pF; see Figs 18 and 19
δ _{VCO}	duty factor at VCO _{OUT}		50						%	4.5	

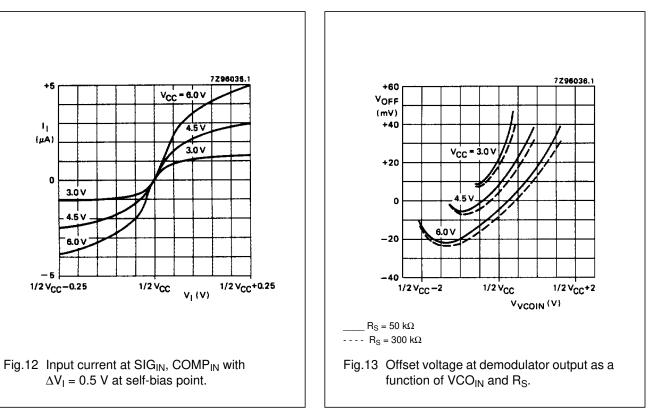
74HC/HCT7046A

7296034.1

V_{CC} = 3.0 V

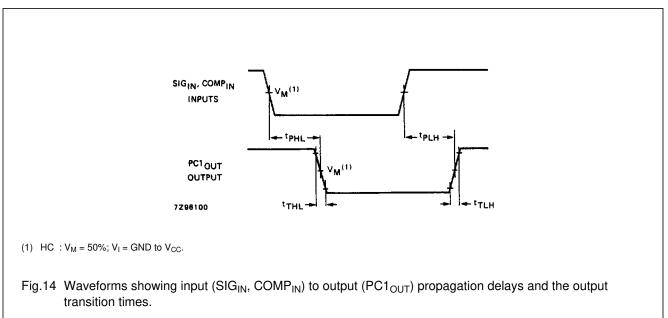

4.5 V

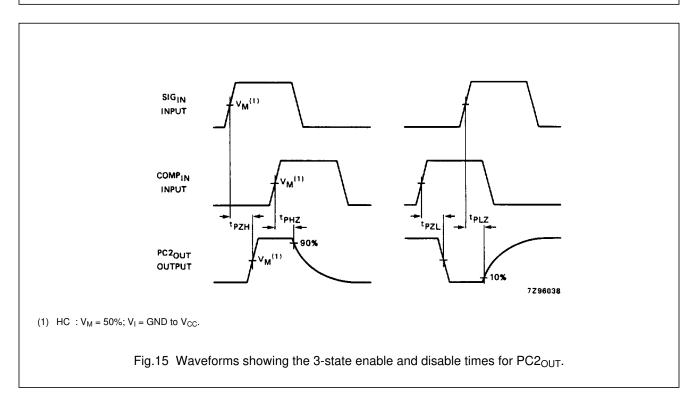
6.0 V

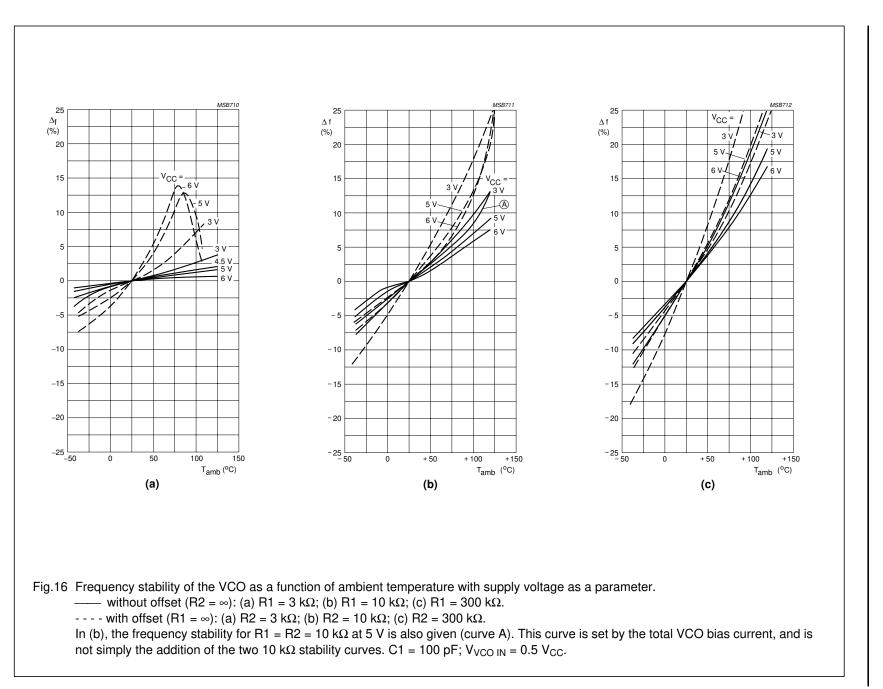

v₁ (v)

1/2 V_{CC}+0.25

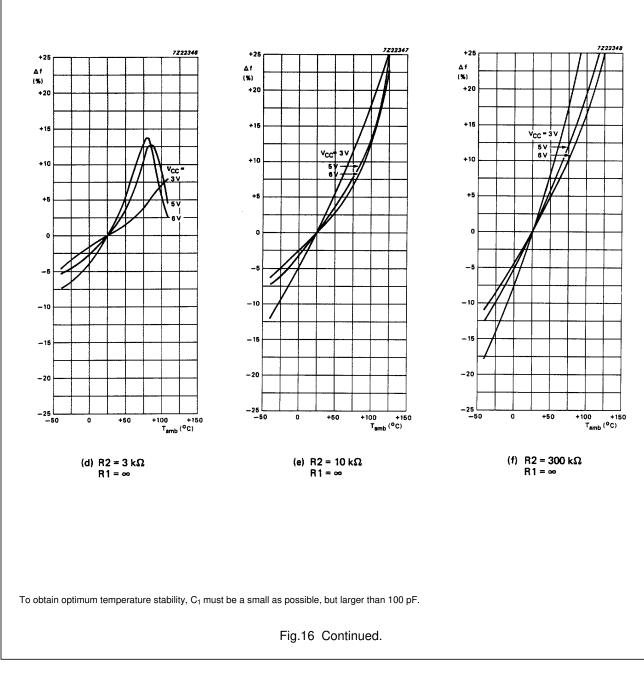
1/2 V_{CC}




FIGURE REFERENCES FOR DC CHARACTERISTICS

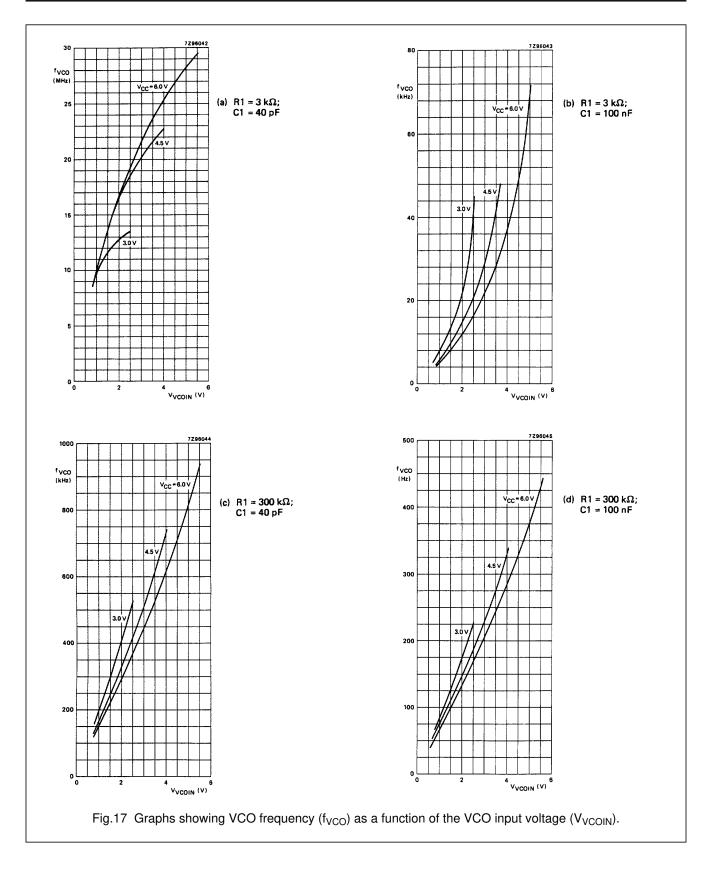

74HC/HCT7046A

AC WAVEFORMS



December 1990

Phase-locked-loop with lock detector


December 1990

23

Phase-locked-loop with lock detector

AC WAVEFORMS

