

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC7266Quad 2-input EXCLUSIVE-NOR gate

Product specification
File under Integrated Circuits, IC06

December 1990

Quad 2-input EXCLUSIVE-NOR gate

74HC7266

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC7266 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC7266 provide the EXCLUSIVE-NOR function with active push-pull output.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT	
STIVIDUL	PARAMETER	CONDITIONS	НС	UNII	
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	11	ns	
C _I	input capacitance		3.5	pF	
C _{PD}	power dissipation capacitance per gate	note 1	17	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 C_L = output load capacitance in pF

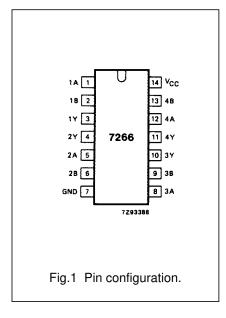
V_{CC} = supply voltage in V

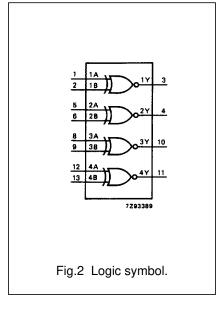
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

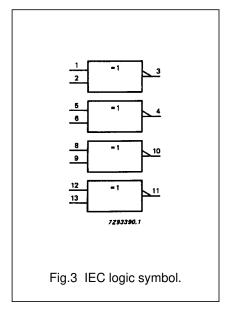
2. For HC the condition is $V_I = GND$ to V_{CC}

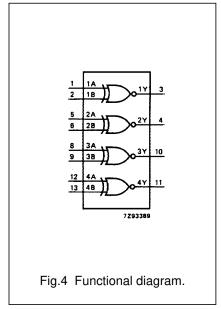
For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

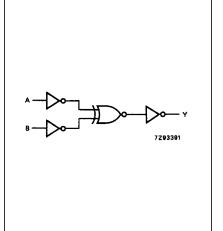
ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


Quad 2-input EXCLUSIVE-NOR gate


74HC7266


PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1, 5, 8, 12	1A to 4A	data inputs
2, 6, 9, 13	1B to 4B	data inputs
3, 4, 10, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

FUNCTION TABLE

INP	OUTPUT				
nA	nB	nY			
L	L	Н			
L	Н	L			
Н	L	L			
Н	Н	Н			

Notes

H = HIGH voltage level
 L = LOW voltage level

Fig.5 Logic diagram (one gate).

Quad 2-input EXCLUSIVE-NOR gate

74HC7266

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard


I_{CC} category: SSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)					UNIT	TEST CONDITIONS			
SYMBOL		74HC							WAVEFORMS		
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(',	
t _{PHL} / t _{PLH}	propagation delay		39	115		145		175	ns	2.0	Fig.6
	nA, nB to nY		14	23		29		35		4.5	
			11	20		25		30		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.6
			7	15		19		22		4.5	
			6	13		16		19		6.0	

AC WAVEFORMS

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} .

Fig.6 Waveforms showing the input (nA, nB) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".