imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

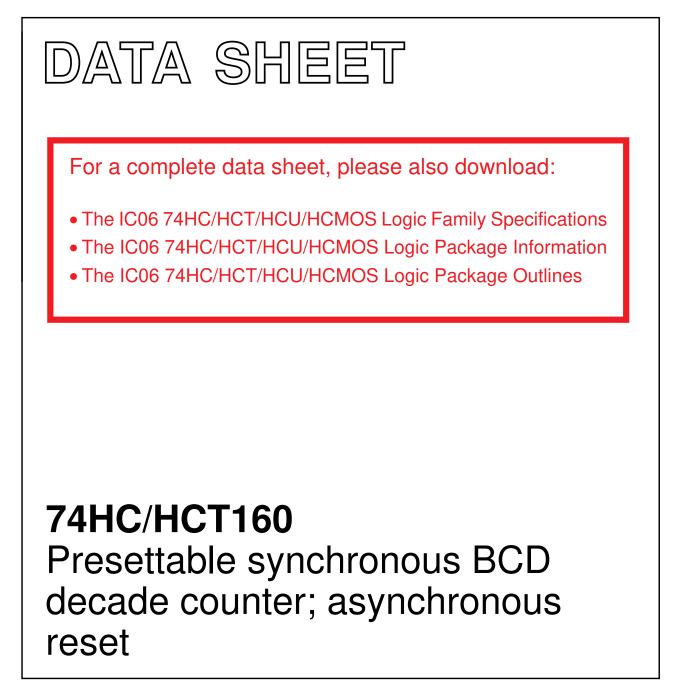
Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:


- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT160

FEATURES

- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive-edge triggered clock
- Asynchronous reset
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

QUICK REFERENCE DATA

The 74HC/HCT160 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT160 are synchronous presettable decade counters which feature an internal look-ahead carry and can be used for high-speed counting.

Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (CP).

The outputs $(Q_0 \text{ to } Q_3)$ of the counters may be preset to a HIGH or LOW level. A LOW level at the parallel enable

GND = 0 V; T_{amb} = 25 °C; $t_r = t_f = 6 \text{ ns}$ **TYPICAL** SYMBOL PARAMETER CONDITIONS UNIT HC HCT $C_{L} = 15 \, pF;$ propagation delay t_{PHL} CP to Q_n 21 $V_{CC} = 5 V$ 19 ns CP to TC 21 24 ns MR to Q_n 21 23 ns MR to TC 21 26 ns CET to TC 14 14 ns propagation delay t_{PLH} CP to Q_n 19 21 ns CP to TC 21 20 ns 7 CET to TC 14 ns 61 31 MHz maximum clock f_{max} frequency CI 3.5 3.5 input capacitance pF CPD power dissipation notes 1 and 2 39 34 pF capacitance per package

counter on the positive-going edge of the clock (providing that the set-up and hold time requirements for \overrightarrow{PE} are met). Preset takes place regardless of the levels at count enable inputs (CEP and CET).

input (\overline{PE}) disables the counting action and causes the data at the data inputs (D_0 to D_3) to be loaded into the

A LOW level at the master reset input ($\overline{\text{MR}}$) sets all four outputs of the flip-flops (Q₀ to Q₃) to LOW level regardless of the levels at CP, $\overline{\text{PE}}$, CET and CEP inputs (thus providing an asynchronous clear function).

The look-ahead carry simplifies serial cascading of the counters. Both count enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH level output of Q_0 . This pulse can be used to enable the next cascaded stage.

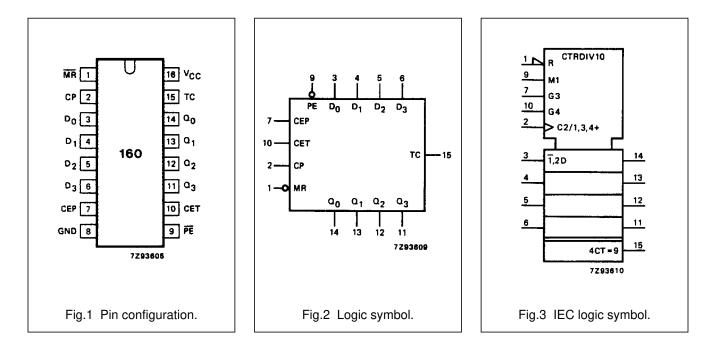
The maximum clock frequency for the cascaded counters is determined by the CP to TC propagation delay and CEP to CP set-up time, according to the following formula:

$$f_{max} = \frac{1}{t_{P(max)} (CP \text{ to TC}) + t_{SU} (CEP \text{ to CP})}$$

Notes

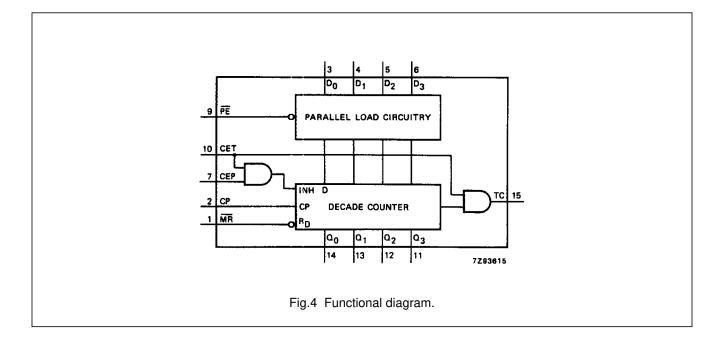
 C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$\label{eq:posterior} \begin{split} P_{D} &= C_{PD} \times V_{CC}{}^{2} \times f_{i} + \\ & \sum \left(C_{L} \times V_{CC}{}^{2} \times f_{o} \right) \\ \text{where:} \end{split}$$


2. For HC the condition is $V_1 = GND$ to V_{CC} For HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	MR	asynchronous master reset (active LOW)
2	СР	clock input (LOW-to-HIGH, edge-triggered)
3, 4, 5, 6	D ₀ to D ₃	data inputs
7	CEP	count enable input
8	GND	ground (0 V)
9	PE	parallel enable input (active LOW)
10	CET	count enable carry input
14, 13, 12, 11	Q_0 to Q_3	flip-flop outputs
15	TC	terminal count output
16	V _{CC}	positive supply voltage

74HC/HCT160

74HC/HCT160

FUNCTION TABLE

			OUTPUTS					
OPERATING MODE	MR	СР	CEP	CET	PE	D _n	Q _n	тс
reset (clear)	L	Х	Х	Х	Х	Х	L	L
parallel load	H H	↑ ↑	X X	X X	1	l h	L H	L (1)
count	Н	1	h	h	h	Х	count	(1)
hold	Н	Х	1	Х	h	Х	q _n	(1)
(do nothing)	Н	X	х	1	h	Х	q _n	L

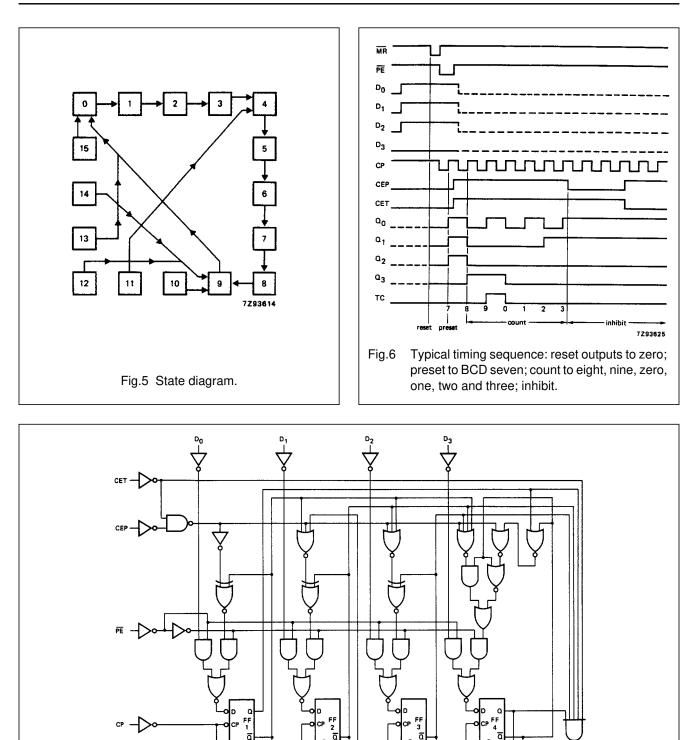
Notes

1. The TC output is HIGH when CET is HIGH and the counter is at terminal count (HLLH).

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level


I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition

q = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition

X = don't care

 \uparrow = LOW-to-HIGH CP transition

74HC/HCT160

MR

a,

Fig.7 Logic diagram.

a'a

тс

7Z93629

a'o

74HC/HCT160

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°		TEST CONDITIONS				
SYMBOL	PARAMETER		74HC								WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig. 8
t _{PHL} / t _{PLH}	propagation delay CP to TC		69 25 20	215 43 31		270 54 46		325 65 55	ns	2.0 4.5 6.0	Fig. 8
t _{PHL}	propagation delay MR to Q _n		69 25 20	210 42 36		265 53 45		315 63 54	ns	2.0 4.5 6.0	Fig. 9
t _{PHL}	propagation delay MR to TC		69 25 20	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	Fig. 9
t _{PHL} / t _{PLH}	propagation delay CET to TC		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 10
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 8 and 10
t _W	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 8
t _W	master reset pulse width LOW	80 16 14	28 10 8		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 9
t _{rem}	removal time MR to CP	100 20 17	30 11 9		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig. 9
t _{su}	set-up time D _n to CP	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 11
t _{su}	set-up time PE to CP	135 27 23	41 15 12		170 34 29		205 41 35		ns	2.0 4.5 6.0	Fig. 11

74HC/HCT160

SYMBOL					T _{amb} (°		TEST CONDITIONS				
					74HC						
	PARAMETER		+25			-40 to +85		-40 to +125		V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{su}	set-up time CEP, CET to CP	200 40 34	63 23 18		250 50 43		300 60 51		ns	2.0 4.5 6.0	Fig. 12
t _h	hold time D _n to CP	0 0 0	-17 -6 -5		0 0 0		0 0 0		ns	2.0 4.5 6.0	Figs 11 and 12
t _h	hold time PE to CP	0 0 0	-41 -15 -12		0 0 0		0 0 0		ns	2.0 4.5 6.0	Figs 11 and 12
t _h	hold time CEP, CET to CP	0 0 0	-58 -21 -17		0 0 0		0 0 0		ns	2.0 4.5 6.0	Figs 11 and 12
f _{max}	maximum clock pulse frequency	6.0 30 35	18 55 66		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig. 8

74HC/HCT160

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
MR	0.95
СР	0.80
CEP	0.25
D _n	0.25
CET	1.05
PT	0.30

Product specification

74HC/HCT160

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°		TEST CONDITIONS				
SYMBOL					74HC	1					
	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		25	43		54		65	ns	4.5	Fig. 8
t _{PHL}	propagation delay CP to TC		28	48		60		72	ns	4.5	Fig. 8
t _{PLH}	propagation delay CP to TC		23	39		49		59	ns	4.5	Fig. 8
t _{PHL}	propagation delay MR to Q _n		27	50		63		75	ns	4.5	Fig. 9
t _{PHL}	propagation delay MR to TC		30	50		63		75	ns	4.5	Fig. 9
t _{PHL}	propagation delay CET to TC		17	35		44		53	ns	4.5	Fig. 10
t _{PLH}	propagation delay CET to TC		9	17		21		26	ns	4.5	Fig. 10
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 8 and 10
tw	clock pulse width HIGH or LOW	16	8		20		24		ns	4.5	Fig. 8
t _W	master reset pulse width LOW	20	11		25		30		ns	4.5	Fig. 9
t _{rem}	removal time MR to CP	20	9		25		30		ns	4.5	Fig. 9
t _{su}	set-up time D _n to CP	18	10		25		30		ns	4.5	Fig. 11
t _{su}	set-up time PE to CP	30	18		44		53		ns	4.5	Fig. 11
t _{su}	set-up time CEP, CET to CP	50	30		63		75		ns	4.5	Fig. 12
t _h	hold time D _n to CP	0	-8		0		0		ns	4.5	Figs 11 and 12
t _h	hold time PE to CP	0	-13		0		0		ns	4.5	Figs 11 and 12
t _h	hold time CEP, CET to CP	0	-21		0		0		ns	4.5	Figs 11 and 12
f _{max}	maximum clock pulse frequency	16	28		13		11		MHz	4.5	Fig. 8

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".