mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT251

FEATURES

- True and complement outputs
- Both outputs are 3-state for further multiplexer expansion
- Multifunction capability
- · Permits multiplexing from n-lines to one line
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT251 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; \text{ } T_{amb} = 25 \text{ }^{\circ}\text{C}; \text{ } t_r = t_f = 6 \text{ ns}$

The 74HC/HCT251 are the logic implementations of single-pole 8-position switches with the state of three select inputs (S₀, S₁, S₂) controlling the switch positions. Assertion (Y) and negation (\overline{Y}) outputs are both provided. The output enable input (\overline{OE}) is active LOW. The logic function provided at the output, when activated, is:

$$\begin{split} \mathsf{Y} &= \overline{\mathsf{OE}}.(I_0.\overline{\mathsf{S}}_0.\overline{\mathsf{S}}_1.\overline{\mathsf{S}}_2 + \mathsf{I}_1.\mathsf{S}_0.\overline{\mathsf{S}}_1.\overline{\mathsf{S}}_2 + \\ &+ \mathsf{I}_2.\overline{\mathsf{S}}_0.\mathsf{S}_1.\overline{\mathsf{S}}_2 + \mathsf{I}_3.\mathsf{S}_0.\mathsf{S}_1.\overline{\mathsf{S}}_2 + \\ &+ \mathsf{I}_4.\overline{\mathsf{S}}_0.\overline{\mathsf{S}}_1.\mathsf{S}_2 + \mathsf{I}_5.\mathsf{S}_0.\overline{\mathsf{S}}_1.\mathsf{S}_2 + \\ &+ \mathsf{I}_6.\overline{\mathsf{S}}_0.\mathsf{S}_1.\mathsf{S}_2 + \mathsf{I}_7.\mathsf{S}_0.\mathsf{S}_1.\mathsf{S}_2) \end{split}$$

Both outputs are in the high impedance OFF-state (Z) when the output enable input is HIGH, allowing multiplexer expansion by tying the outputs.

SYMBOL	DADAMETED	CONDITIONS	ТҮР			
STWBOL	PARAMETER	CONDITIONS	нс	нст	GIAIT	
t _{PHL} / t _{PLH}	propagation delay	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	I _n to Y		15	19	ns	
	I_n to \overline{Y}		17	19	ns	
	S _n to Y		20	20	ns	
	S_n to \overline{Y}		21	21	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	44	46	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 P_{D} = $C_{PD} \times V_{CC}{}^{2} \times f_{i} + \Sigma ~(C_{L} \times V_{CC}{}^{2} \times f_{o})$ where:

 $f_i = input frequency in MHz$

 $f_o = output$ frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = sum of outputs$

 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Product specification

74HC/HCT251

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4, 3, 2, 1, 15, 14, 13, 12	I ₀ to I ₇	multiplexer inputs
5	Y	multiplexer output
6	Ϋ́	complementary multiplexer output
7	OE	3-state output enable input (active LOW)
8	GND	ground (0 V)
11, 10, 9	S ₀ , S ₁ , S ₂	select inputs
16	V _{CC}	positive supply voltage

Product specification

74HC/HCT251

FUNCTION TABLE

INPUTS										OUT	PUTS		
ŌĒ	S ₂	S ₁	S ₀	I ₀	I ₁	l ₂	l ₃	I ₄	I ₅	I ₆	I ₇	Ϋ́	Y
Н	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X	Z	Z
L	L	L	L	L	Х	Х	Х	X	Х	Х	X	Н	L
L	L	L	L L	н	Х	X	Х	X	Х	Х	X	L	Н
L	L	L	н	Х	L	X	Х	X	X	Х	X	н	L
L	L	L	н	Х	Н	X	Х	X	X	X	X	L	н
L	L	Н	L	Х	Х	L	Х	X	Х	Х	X	Н	L
L	L	Н	L L	Х	Х	н	Х	X	Х	Х	X	L	Н
L	L	Н	н	Х	Х	X	L	X	X	Х	X	н	L
L	L	Н	н	Х	Х	X	Н	X	X	Х	X	L	н
L	Н	L	L	Х	Х	Х	Х	L	Х	Х	X	Н	L
L	н	L	L L	Х	Х	X	Х	Н	Х	Х	X	L	Н
L	н	L	Н	Х	Х	X	Х	X	L	Х	X	Н	L
L	н	L	н	Х	Х	X	Х	X	н	X	X	L	н
L	Н	Н	L	Х	Х	Х	Х	X	Х	L	X	Н	L
L	н	Н	L	Х	Х	X	Х	X	Х	Н	X	L	Н
L	Н	Н	н	Х	X	X	Х	X	X	Х	L	Н	L
L	Н	Н	Н	Х	Х	X	Х	X	Х	Х	Н	L	Н

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

74HC/HCT251

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL					74HC			WAVEFORMO				
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORINS	
		min.	typ.	max.	min.	max.	min.	max.		(.,		
t _{PHL} / t _{PLH}	propagation delay I_n to Y		50 18 14	170 34 29		215 43 37		255 51 43	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay I_n to \overline{Y}		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay S _n to Y		66 24 19	205 41 35		255 51 43		310 62 53	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay S_n to \overline{Y}		69 25 20	205 41 35		255 51 43		310 62 53	ns	2.0 4.5 6.0	Fig.7	
t _{PZH} / t _{PZL}	$\frac{3\text{-state output enable time}}{\overline{\text{OE}} \text{ to Y, } \overline{\text{Y}}}$		36 13 10	140 28 24		175 35 30		210 42 36	ns	2.0 4.5 6.0	Fig.7	
t _{PHZ} / t _{PLZ}	$\frac{3\text{-state output disable time}}{\overline{\text{OE}} \text{ to } Y, \overline{Y}}$		39 14 11	140 28 24		170 35 30		210 42 36	ns	2.0 4.5 6.0	Fig.7	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7	

74HC/HCT251

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT								
l _n	1.00								
S ₀	1.50								
S ₁ , S ₂	1.50								
OE	1.50								

AC CHARACTERISTICS FOR HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL		74HCT									WAVEFORMO	
		+25			-40 to +85		-40 to +125			V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(•)		
t _{PHL} / t _{PLH}	propagation delay I_n to Y		22	35		44		53	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay I_n to \overline{Y}		22	35		44		53	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay S _n to Y		24	44		55		66	ns	4.5	Fig.6	
t _{PHL} / t _{PLH}	propagation delay S_n to \overline{Y}		25	44		55		66	ns	4.5	Fig.7	
t _{PZH} / t _{PZL}	$\frac{3\text{-state output enable time}}{\overline{\text{OE}} \text{ to Y, } \overline{\text{Y}}}$		13	28		35		42	ns	4.5	Fig.7	
t _{PHZ} / t _{PLZ}	$\frac{3\text{-state output disable time}}{\overline{\text{OE}} \text{ to Y, } \overline{\text{Y}}}$		14	28		35		42	ns	4.5	Fig.7	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7	

74HC/HCT251

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".