imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT280

FEATURES

- · Word-length easily expanded by cascading
- Similar pin configuration to the "180" for easy system up-grading
- · Generates either odd or even parity for nine data bits
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT280 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT280 are 9-bit parity generators or checkers commonly used to detect errors in high-speed data

transmission or data retrieval systems. Both even and odd parity outputs are available for generating or checking even or odd parity up to 9 bits.

The even parity output (Σ_E) is HIGH when an even number of data inputs (I₀ to I₈) are HIGH. The odd parity output (Σ_0) is HIGH when an odd number of data inputs are HIGH.

Expansion to larger word sizes is accomplished by tying the even outputs (Σ_E) of up to nine parallel devices to the data inputs of the final stage. For a single-chip 16-bit even/odd parity generator/checker, see PC74HC/HCT7080.

APPLICATIONS

- 25-line parity generator/checker
- 81-line parity generator/checker

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT	
	FARAMETER	CONDITIONS	НС	НСТ	
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	I_n to Σ_E		17	18	ns
	I_n to Σ_O		20	22	ns
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipationcapacitance per package	notes 1 and 2	65	65	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 $f_i = input frequency in MHz$

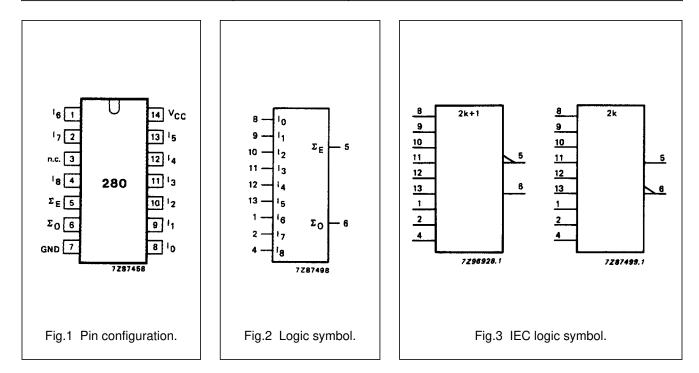
 $f_o = output frequency in MHz$

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

 C_L = output load capacitance in pF

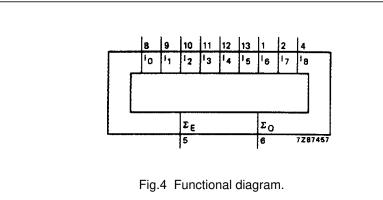
 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}


For HCT the condition is V_{I} = GND to V_{CC} – 1.5 V

ORDERING INFORMATION

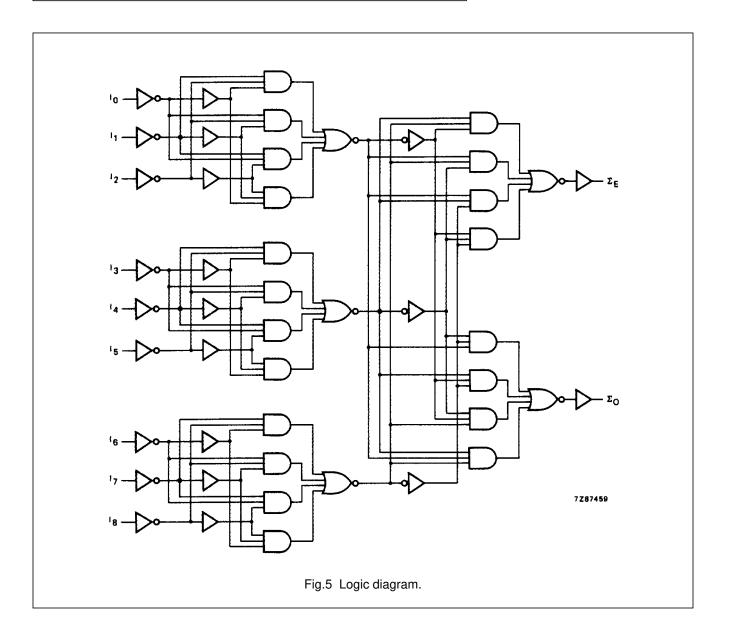
See "74HC/HCT/HCU/HCMOS Logic Package Information".


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION				
8, 9, 10, 11, 12, 13, 1, 2, 4	I ₀ to I ₈	data inputs				
5, 6	Σ_{E}, Σ_{O}	parity outputs				
7	GND	ground (0 V)				
14	V _{CC}	positive supply voltage				

74HC/HCT280

74HC/HCT280



FUNCTION TABLE

INPUTS	OUTPUTS				
number of HIGH data inputs (I_0 to I_8)	Σ_{E}	Σο			
even odd	H L	L H			

Note

1. H = HIGH voltage level L = LOW voltage level

74HC/HCT280

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Out put capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC							UNIT		WAVEFORMS
STINDOL		+25			-40 to +85		-40 to +125			V _{CC} (V)	WAVEFORMIS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_E		55 20 16	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_O		63 23 18	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6

74HC/HCT280

DC CHARACTERISTICS FOR 74HCT

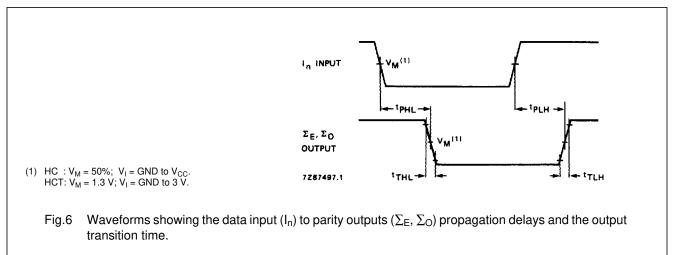
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

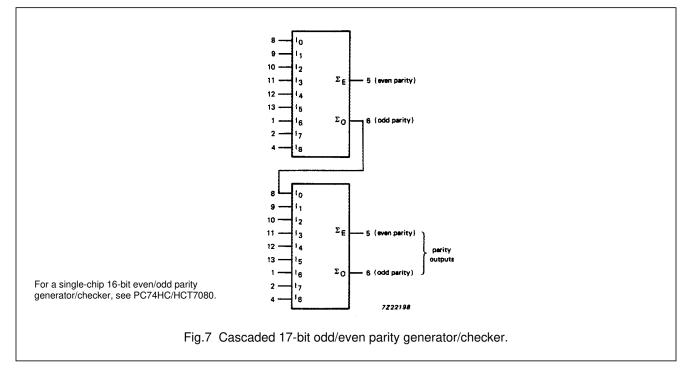
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
l _n	1.0						


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


SYMBOL	PARAMETER	T _{amb} (°C) 74HCT								TEST CONDITIONS	
											WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_E		21	42		53		63	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_O		26	45		56		68	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6

74HC/HCT280

AC WAVEFORMS

APPLICATION INFORMATION

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".