: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4016 Quad bilateral switches

File under Integrated Circuits, IC06

FEATURES

- Low "ON" resistance:
160Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
120Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$
80Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$
- Individual switch controls
- Typical "break before make" built in
- Output capability: non-standard
- I ICC category: SSI

GENERAL DESCRIPTION

The 74HC/HCT4016 are high-speed Si-gate CMOS devices and are pin compatible with the " 4016 " of the
"4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4016 have four independent analog switches (transmission gates).
Each switch has two input/output terminals $\left(Y_{n}, Z_{n}\right)$ and an active HIGH enable input $\left(E_{n}\right)$. When E_{n} is connected to $V_{C C}$, a low bidirectional path between Y_{n} and Z_{n} is established (ON condition). When E_{n} is connected to ground (GND), the switch is disabled and a high impedance between Y_{n} and Z_{n} is established (OFF condition).

Current through a switch will not cause additional V_{CC} current provided the voltage at the terminals of the switch is maintained within the supply voltage range; $V_{C C} \gg\left(V_{Y}, V_{Z}\right) \gg$ GND. Inputs Y_{n} and Z_{n} are electrically equivalent terminals.

QUICK REFERENCE DATA
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time E_{n} to $\mathrm{V}_{\text {OS }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	16	17	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{n} to $\mathrm{V}_{\text {OS }}$		14	20	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per switch	notes 1 and 2	12	12	pF
C_{S}	max. switch capacitance		5	5	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}^{2} \times f_{o}\right\} \text { where: }
$$

$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs
$C_{L}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Quad bilateral switches

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,4,8,11$	Y_{0} to Y_{3}	independent inputs/outputs
7	GND	ground (0 V)
$2,3,9,10$	Z_{0} to Z_{3}	independent inputs/outputs
$13,5,6,12$	E_{0} to E_{3}	enable inputs (active HIGH)
14	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

(a)

Fig. 3 IEC logic symbol.

Fig. 4 Functional diagram.

APPLICATIONS

- Signal gating
- Modulation
- Demodulation
- Chopper

FUNCTION TABLE

INPUT $\mathbf{E}_{\mathbf{n}}$	CHANNEL IMPEDANCE
L	high
H	low

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level

Fig. 5 Schematic diagram (one switch).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V_{CC}	DC supply voltage	-0.5	+11.0	V	
$\pm{ }_{\text {IK }}$	DC digital input diode current		20	mA	for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {SK }}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {S }}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\mathrm{CC}} ; \pm_{\mathrm{GND}}$	DC V ${ }_{\text {CC }}$ or GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ 74HC/HCT above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
$\mathrm{P}_{\text {S }}$	power dissipation per switch		100	mW	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
$\mathrm{V}_{\text {CC }}$	DC supply voltage	2.0	5.0	10.0	4.5	5.0	5.5	V	
V_{1}	DC input voltage range	GND		$\mathrm{V}_{\text {CC }}$	GND		$\mathrm{V}_{C C}$	V	
$\mathrm{V}_{\text {S }}$	DC switch voltage range	GND		$\mathrm{V}_{C C}$	GND		$\mathrm{V}_{C C}$	V	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	see DC and AC
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CHARACTERISTICS
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		6.0	$\begin{aligned} & \hline 1000 \\ & 500 \\ & 400 \\ & 250 \\ & \hline \end{aligned}$		6.0	500	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$

Quad bilateral switches

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: $\quad \mathrm{V}_{\mathrm{CC}}=2.0,4.5,6.0$ and 9.0 V
For 74HCT: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HC/HCT								V_{cc} (V)	$\begin{gathered} \mathbf{I}_{\mathbf{S}} \\ (\mu \mathrm{A}) \end{gathered}$	$V_{\text {is }}$	V_{1}
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
R_{ON}	ON resistance (peak)		$\begin{aligned} & - \\ & 160 \\ & 120 \\ & 85 \end{aligned}$	$\begin{aligned} & 320 \\ & 240 \\ & 170 \end{aligned}$		$\begin{aligned} & 400 \\ & 300 \\ & 213 \end{aligned}$		$\begin{aligned} & 480 \\ & 360 \\ & 255 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{CC} to GND	V_{IH} or $V_{I L}$
R_{ON}	ON resistance (rail)		$\begin{array}{\|l\|} \hline 160 \\ 80 \\ 70 \\ 60 \end{array}$	$\begin{aligned} & 160 \\ & 140 \\ & 120 \end{aligned}$		$\begin{aligned} & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{aligned} & 240 \\ & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	GND	V_{IH} or V_{IL}
R_{ON}	ON resistance (rail)		$\begin{array}{\|l\|} \hline 170 \\ 90 \\ 80 \\ 65 \end{array}$	$\begin{aligned} & 180 \\ & 160 \\ & 135 \end{aligned}$		$\begin{aligned} & 225 \\ & 200 \\ & 170 \end{aligned}$		$\begin{aligned} & 270 \\ & 240 \\ & 205 \end{aligned}$	$\begin{array}{\|l\|} \hline \Omega \\ \Omega \\ \Omega \\ \Omega \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ \hline \end{array}$	$\begin{aligned} & \hline 100 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	V_{CC}	V_{IH} or V_{IL}
$\Delta \mathrm{R}_{\mathrm{ON}}$	maximum $\triangle \mathrm{ON}$ resistance between any two channels		$\begin{aligned} & - \\ & 16 \\ & 12 \\ & 9 \end{aligned}$						Ω Ω Ω Ω	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$		V_{CC} to GND	V_{IH} or V_{IL}

Notes to the DC Characteristics

1. At supply voltages approaching 2.0 V the analog switch ON -resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig.6.

Fig. 8 Test circuit for measuring ON-state current.

Fig. 9 Typical Ron as a function of input voltage $\mathrm{V}_{\text {is }}$ for $\mathrm{V}_{\text {is }}=0$ to V_{CC}.

Quad bilateral switches

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								V_{Cc} (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
V_{IH}	HIGH level input voltage	$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.3 \end{aligned}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$		V	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$		
V_{IL}	LOW level input voltage		$\begin{array}{\|l\|} \hline 0.8 \\ 2.1 \\ 2.8 \\ 4.3 \end{array}$	$\begin{array}{\|l\|} \hline 0.50 \\ 1.35 \\ 1.80 \\ 2.70 \end{array}$		$\begin{aligned} & \hline 0.50 \\ & 1.35 \\ & 1.80 \\ & 2.70 \end{aligned}$		$\begin{array}{\|l\|} \hline 0.50 \\ 1.35 \\ 1.80 \\ 2.70 \end{array}$	V	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ \hline \end{array}$		
$\pm I_{1}$	input leakage current			$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{array}{l\|} 1.0 \\ 2.0 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	V_{IH} or V_{IL}	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.7) } \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	V_{IH} or VIL	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.8) } \\ & \hline \end{aligned}$
ICC	quiescent supply current			$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 20.0 \\ & 40.0 \end{aligned}$		$\begin{aligned} & 40.0 \\ & 80.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\text { GND or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\text {os }}= \\ & \mathrm{V}_{\mathrm{CC}} \text { or GND } \end{aligned}$

AC CHARACTERISTICS FOR 74HC
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								$V_{c c}$ (V)	OTHER
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $V_{\text {is }}$ to $V_{\text {os }}$		17 6 5 4	$\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & 8 \end{aligned}$		$\begin{aligned} & 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Fig.16)
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time E_{n} to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & \hline 52 \\ & 19 \\ & 15 \\ & 11 \end{aligned}$	$\begin{array}{\|l\|} \hline 190 \\ 38 \\ 32 \\ 28 \end{array}$		$\begin{array}{\|l\|} \hline 240 \\ 48 \\ 41 \\ 35 \end{array}$		$\begin{aligned} & 235 \\ & 57 \\ & 48 \\ & 42 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$R_{L}=1 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$ (see Figs 17 and 18)
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{n} to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & \hline 47 \\ & 17 \\ & 14 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 145 \\ 29 \\ 25 \\ 22 \end{array}$		$\begin{array}{\|l\|} \hline 180 \\ 36 \\ 31 \\ 28 \end{array}$		$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 38 \\ 33 \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \\ \hline \end{array}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 17 and 18)

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	Tamb $\left(^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS		
		74HCT								$V_{\text {Cc }}$ (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
V_{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$		
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{array}{\|l} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$		
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{IH} or V_{IL}	$\begin{array}{\|l} \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ \text { (see Fig.7) } \end{array}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{IH} or V_{IL}	$\begin{aligned} & \left\|\mathrm{V}_{\mathrm{S}}\right\|= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.8) } \end{aligned}$
ICC	quiescent supply current			2.0		20.0		40.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\text { GND or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{os}}= \\ & \mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \mathrm{~V} \end{aligned}$	other inputs at V_{CC} or GND

Note

1. The value of additional quiescent supply current ($\Delta \mathrm{I}_{\mathrm{CC}}$) for a unit load of 1 is given here.

To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
E_{N}	1.00

AC CHARACTERISTICS FOR 74HCT
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HCT								$V_{c c}$ (V)	OTHER
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $V_{\text {is }} \text { to } V_{\text {os }}$		6	12		15		18	ns	4.5	$\mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Fig.16)
$\mathrm{t}_{\text {PZH }}$	turn "ON" time E_{n} to V_{os}		19	35		44		53	ns	4.5	$R_{L}=1 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$ $\text { (see Figs } 17 \text { and 18) }$
$t_{\text {PZL }}$	turn "ON" time E_{n} to $V_{\text {os }}$		20	35		44		53	ns	4.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 17 and 18)
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{n} to $\mathrm{V}_{\text {os }}$		23	35		44		53	ns	4.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 17 and 18)

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	typ.	UNIT	$V_{c c}$ (V)	$V_{i s(p-p)}$ (V)	CONDITIONS
	sine-wave distortion $\mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & 0.80 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 14) } \end{aligned}$
	sine-wave distortion $\mathrm{f}=10 \mathrm{kHz}$	$\begin{aligned} & 2.40 \\ & 1.20 \end{aligned}$	$\begin{array}{\|l\|} \hline \% \\ \% \end{array}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{array}{\|l\|} \hline-50 \\ -50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Figs } 10 \text { and } 15 \text {) } \end{aligned}$
	crosstalk between any two switches	$\begin{array}{\|l} \hline-60 \\ -60 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{dB} \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 9.0 \\ & \hline \end{aligned}$	note 3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Fig. 12) } \\ & \hline \end{aligned}$
$V_{(p-p)}$	crosstalk voltage between enable or address input to any switch (peak-to-peak value)	$\begin{aligned} & \hline 110 \\ & 220 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$		$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ $\mathrm{f}=1 \mathrm{MHz}\left(\mathrm{E}_{\mathrm{n}}\right.$, square wave between V_{CC} and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$) (see Fig. 13)
$\mathrm{f}_{\text {max }}$	minimum frequency response $(-3 \mathrm{~dB})$	$\begin{aligned} & 150 \\ & 160 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{MHz} \\ \mathrm{MHz} \end{array}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 4	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 11 and 14)
C_{S}	maximum switch capacitance	5	pF			

Notes

1. $V_{i s}$ is the input voltage at a Y_{n} or Z_{n} terminal, whichever is assigned as an input.
2. $V_{o s}$ is the output voltage at a Y_{n} or Z_{n} terminal, whichever is assigned as an output.
3. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
4. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 10 Typical switch "OFF" signal feed-through as a function of frequency.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 11 Typical frequency response.

(a)

(b)

222447

Fig. 12 Test circuit for measuring crosstalk between any two switches.
(a) channel ON condition; (b) channel OFF condition.

The crosstalk is defined as follows (oscilloscope output):

Fig. 13 Test circuit for measuring crosstalk between control and any switch.

Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

Quad bilateral switches

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}. HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 16 Waveforms showing the input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\text {os }}\right)$ propagation delays.

Quad bilateral switches

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	$\mathbf{V}_{\text {is }}$
$t_{\text {PZH }}$	$G N D$	$\mathrm{~V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	GND
$t_{\text {PHZ }}$	GND	V_{CC}
$t_{\text {PLZ }}$	V_{CC}	GND
others	open	pulse

$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$\mathrm{R}_{\mathrm{T}}=$ termination resistance should be equal to the output
impedance Z_{0} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint t_{r}, t_{f} with 50% duty factor.

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

Fig. 18 Test circuit for measuring AC performance.
$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$\mathrm{R}_{\mathrm{T}}=$ termination resistance should be equal to the output impedance Z_{0} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint t_{r}, t_{f} with 50% duty factor.

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

Fig. 19 Input pulse definitions.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

