mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Phase-locked loop with VCO Rev. 3 — 8 June 2016

nexperia

General description 1.

The 74HC4046A; 74HCT4046A is a high-speed Si-gate CMOS device. It is specified in compliance with JEDEC standard no 7A.

Features and benefits 2.

- Low power consumption
- VCO-Inhibit control for ON/OFF keying and for low standby power consumption
- Center frequency up to 17 MHz (typical) at V_{CC} = 4.5 V
- Choice of three phase comparators:
 - PC1: EXCLUSIVE-OR
 - PC2: Edge-triggered J-K flip-flop
 - PC3: Edge-triggered RS flip-flop
- Excellent Voltage Controlled Oscillator (VCO) linearity
- Low frequency drift with supply voltage and temperature variations
- Operating power supply voltage range:
 - VCO section 3.0 V to 6.0 V
 - Digital section 2.0 V to 6.0 V
- Zero voltage offset due to operational amplifier buffering
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V

Applications 3.

- FM modulation and demodulation
- Frequency synthesis and multiplication
- Frequency discrimination
- Tone decoding
- Data synchronization and conditioning
- Voltage-to-frequency conversion
- Motor-speed control

Phase-locked loop with VCO

4. Ordering information

Type number	Package						
	Name	Description	Version				
74HC4046AD	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74HCT4046AD							
74HC4046ADB	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1				
74HCT4046ADB							
74HC4046APW	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				

Table 1. Ordering information

5. Block diagram

Phase-locked loop with VCO

6. Functional diagram

Phase-locked loop with VCO

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
PCP_OUT	1	phase comparator pulse output
PC1_OUT	2	phase comparator 1 output
COMP_IN	3	comparator input
VCO_OUT	4	VCO output
INH	5	inhibit input
C1A	6	capacitor C1 connection A
C1B	7	capacitor C1 connection B
GND	8	ground (0 V)
VCO_IN	9	VCO input
DEM_OUT	10	demodulator output
R1	11	resistor R1 connection
R2	12	resistor R2 connection
PC2_OUT	13	phase comparator 2 output
SIG_IN	14	signal input
PC3_OUT	15	phase comparator 3 output
V _{CC}	16	supply voltage

Phase-locked loop with VCO

8. Functional description

The 74HC4046A; 74HCT4046A is a phase-locked-loop circuit that comprises a linear voltage-controlled oscillator (VCO) and three different phase comparators (PC1, PC2 and PC3). It has a common signal input amplifier and a common comparator input (see Figure 1). The signal input can be directly coupled to a large voltage signal, or indirectly coupled (with a series capacitor) to a small voltage signal. A self-bias input circuit keeps small voltage signals within the linear region of the input amplifiers. With a passive low-pass filter, the 74HC4046A; 74HCT4046A forms a second-order loop PLL. The excellent VCO linearity is achieved by the use of linear op amp techniques.

8.1 VCO

The VCO requires one external capacitor C1 (between pins C1A and C1B) and one external resistor R1 (between pins R1 and GND). Alternatively, it requires two external resistors R1 and R2 (between pins R1 and GND, and R2 and GND). Resistor R1 and capacitor C1 determine the frequency range of the VCO. Resistor R2 enables the VCO to have a frequency offset if necessary (see Figure 4).

The high input impedance of the VCO simplifies the design of the low-pass filters by giving the designer a wide choice of resistor/capacitor ranges. In order not to load the low-pass filter, a demodulator output of the VCO input voltage is provided at pin DEM_OUT. In contrast to conventional techniques, where the DEM_OUT voltage is one threshold voltage lower than the VCO input voltage, the DEM_OUT voltage equals the VCO input. If DEM_OUT is used, a series resistor (R_s) should be connected from pin DEM_OUT to GND; if unused, DEM_OUT should be left open. The VCO output (pin VCO_OUT) can be connected directly to the comparator input (pin COMP_IN), or connected via a frequency divider. When the VCO input DC level is held constant, the VCO output signal has a duty cycle of 50 % (maximum expected deviation 1 %). A LOW-level at the inhibit input (pin INH) enables the VCO and demodulator, while a HIGH-level turns both off to minimize standby power consumption.

The only difference between the 74HC4046A and 74HCT4046A is the input level specification of the INH input. This input disables the VCO section. The sections of the comparator are identical, so that there is no difference in the SIG_IN or COMP_IN inputs between the 74HC4046A and 74HCT4046A.

8.2 Phase comparators

The input signal can be coupled to the self-biasing amplifier at pin SIG_IN, when the signal swing is between the standard HC family input logic levels. Capacitive coupling is required for signals with smaller swings.

8.2.1 Phase Comparator 1 (PC1)

This circuit is an EXCLUSIVE-OR network. The signal and comparator input frequencies (f_i) must have a 50 % duty cycle to obtain the maximum locking range. The transfer characteristic of PC1, assuming ripple ($f_r = 2f_i$) is suppressed, is:

$$V_{DEM_OUT} = \frac{V_{CC}}{\pi} (\Phi_{SIG_IN} - \Phi_{COMP_IN})$$

where:

V_{DEM OUT} is the demodulator output at pin DEM_OUT

 $V_{\text{DEM OUT}} = V_{\text{PC1 OUT}}$ (via low-pass filter)

The phase comparator gain is: $K_p = \frac{V_{CC}}{\pi}(V/r)$

PC1 is fed to the VCO input via the low-pass filter and seen at the demodulator output at pin DEM_OUT (V_{DEM_OUT}). The average output voltage from PC1 is the result of the phase differences of signals (SIG_IN) and the comparator input (COMP_IN). These phase differences are shown in <u>Figure 6</u>. The average of V_{DEM_OUT} is equal to $0.5V_{CC}$ when there is no signal or noise at SIG_IN. Using this input, the VCO oscillates at the center frequency (f_0). Typical waveforms for the PC1 loop locked at f_0 are shown in <u>Figure 7</u>.

The frequency capture range $(2f_c)$ is defined as the frequency range of input signals on which the PLL locks when it was initially out-of-lock. The frequency lock range $(2f_L)$ is the frequency range of the input signals on which the loop stays locked when it was initially in lock. The capture range is smaller or equal to the lock range.

With PC1, the capture range depends on the low-pass filter characteristics and can be made as large as the lock range. This configuration remains locked even with very noisy input signals. Typical behavior of this type of phase comparator is that it can lock to input frequencies close to the harmonics of the VCO center frequency.

Nexperia

74HC4046A; 74HCT4046A

Phase-locked loop with VCO

74HC_HCT4046A

8.2.2 Phase Comparator 2 (PC2)

PC2 is a positive edge-triggered phase and frequency detector. When the PLL uses this comparator, positive signal transitions control the loop and the duty cycles of SIG_IN and COMP_IN are not important. PC2 comprises two D-type flip-flops, control gating and a 3-state output stage. The circuit functions as an up-down counter (see Figure 4) where SIG_IN causes an up-count and COMP_IN a down count. The transfer function of PC2, assuming ripple ($f_r = f_i$) is suppressed, is:

$$V_{DEM_OUT} = \frac{V_{CC}}{4\pi} (\Phi_{SIG_IN} - \Phi_{COMP_IN})$$

where:

V_{DEM OUT} is the demodulator output at pin DEM_OUT

V_{DEM OUT} = V_{PC2 OUT} (via low-pass filter)

The phase comparator gain is: $K_p = \frac{V_{CC}}{4\pi} (V/r)$

 V_{DEM_OUT} is the resultant of the initial phase differences of SIG_IN and COMP_IN as shown in Figure 8. Typical waveforms for the PC2 loop locked at f_o are shown in Figure 9.

When the SIG_IN and COMP_IN frequencies are equal but the phase of SIG_IN leads that of COMP_IN, the p-type output driver at PC2_OUT is held 'ON'. The time that it is held ÓN' corresponds to the phase difference (Φ_{DEM_OUT}). When the phase of SIG_IN lags that of COMP_IN, the n-type driver is held 'ON'.

When the SIG_IN frequency is higher than the COMP_IN frequency, the p-type output driver is held 'ON' for most of the input signal cycle time. For the remainder of the cycle time, both n- and p-type drivers are 'OFF' (3-state). If the SIG_IN frequency is lower than the COMP_IN frequency, then it is the n-type driver that is held 'ON' for most of the cycle. The voltage at capacitor (C2) of the low-pass filter, connected to PC2_OUT, varies until the phase and frequency of the signal and comparator inputs are equal. At this stable point, the voltage on C2 remains constant as the PC2 output is in 3-state and the VCO_IN input is in a high-impedance state. In this condition, the signal at the phase comparator pulse output (PCP_OUT) is a HIGH level and can be used for indicating a locked condition.

Thus for PC2 no phase difference exists between SIG_IN and COMP_IN over the full frequency range of the VCO. The power dissipation due to the low-pass filter is reduced because both n- and p-type output drivers are 'OFF' for most of the signal input cycle. The PLL lock range for this type of phase comparator is equal to the capture range and is independent of the low-pass filter. With no signal present at SIG_IN the VCO adjust, via PC2, to its lowest frequency.

Nexperia

74HC4046A; 74HCT4046A

Phase-locked loop with VCO

74HC_HCT4046A

8.2.3 Phase Comparator 3 (PC3)

PC3 is a positive edge-triggered sequential phase detector using an RS-type flip-flop. When the PLL is using this comparator, positive signal transitions control the loop and the duty factors of SIG_IN and COMP_IN are not important. The transfer characteristic of PC3, assuming ripple ($f_r = f_i$) is suppressed, is:

$$V_{DEM_OUT} = \frac{V_{CC}}{2\pi} (\Phi_{SIG_IN} - \Phi_{COMP_IN})$$

where:

VDEM OUT is the demodulator output at pin DEM_OUT

V_{DEM_OUT} = V_{PC3_OUT} (via low-pass filter)

The phase comparator gain is: $K_p = \frac{V_{CC}}{2\pi}(V/r)$

PC3 is fed to the VCO via the low-pass filter and seen at the demodulator output at pin DEM_OUT. The average output from PC3 is the resultant of the phase differences of SIG_IN and COMP_IN, see Figure 10. Typical waveforms for the PC3 loop locked at f_o are shown in Figure 11.

The phase-to-output response characteristic of PC3 (Figure 10) differs from PC2 in that the phase angle between SIG_IN and COMP_IN varies between 0° and 360°. It is 180° at the center frequency. Also PC3 gives a greater voltage swing than PC2 for input phase differences. As a result, the ripple content of the VCO input signal is higher. The PLL lock range for this type of phase comparator and the capture range are dependent on the low-pass filter. With no signal present at SIG_IN, the VCO adjusts to its lowest frequency via PC3.

Nexperia

74HC4046A; 74HCT4046A

Phase-locked loop with VCO

74HC_HCT4046A

9. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC}$ + 0.5 V	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5$ V or $V_O > V_{CC}$ + 0.5 V	-	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	+50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$			
		SO16 and (T)SSOP16 [1]	-	500	mW

[1] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 $^\circ\text{C}.$

For SSOP16 and TSSOP16 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

10. Recommended operating conditions

Table 4.	Recommended	operating	conditions
----------	-------------	-----------	------------

Symbol	Parameter	Conditions	74	HC4046	6 A	74	HCT404	6A	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		3.0	5.0	6.0	4.5	5.0	5.5	V
		when VCO is not used	2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
$\Delta t / \Delta V$	input transition rise and	pin INH							
	fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

11. Static characteristics

11.1 Static characteristics 74HC4046A

Table 5. Static characteristics 74HC4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Phase c	omparator sect	ion; T _{amb} = 25 °C				
V _{IH}	HIGH-level	pins SIG_IN, COMP_IN; DC coupled				
	input voltage	V _{CC} = 2.0 V	1.5	1.2	-	۷
		$V_{CC} = 4.5 V$	3.15	2.4	-	۷
		$V_{CC} = 6.0 V$	4.2	3.2	-	۷
V _{IL}	LOW-level	pins SIG_IN, COMP_IN; DC coupled				
	input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		$V_{CC} = 4.5 V$	-	2.1	1.35	۷
		V _{CC} = 6.0 V	-	2.8	1.8	٧
V _{OH}	DH HIGH-level output voltage	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}				
		$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	٧
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	٧
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	٧
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	٧
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	٧
V _{OL}	LOW-level output voltage	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}				
V _{OL}		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	-	0	0.1	٧
		$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	-	0	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	٧
li	input leakage	pins SIG_IN, COMP_IN; V _I = V _{CC} or GND				
	current	V _{CC} = 2.0 V	-	-	±3	μA
		V _{CC} = 3.0 V	-	-	±7	μA
		V _{CC} = 4.5 V	-	-	±18	μA
		V _{CC} = 6.0 V	-	-	±30	μA
I _{OZ}	OFF-state	pin PC2_OUT; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND				
	output current	V _{CC} = 6.0 V	-	-	±0.5	μA
RI	input resistance	pins SIG_IN, COMP_IN; V _I at self-bias operating point; $\Delta V_I = 0.5 V$; see Figure 12, 13 and 14				
		V _{CC} = 3.0 V	-	800	-	kΩ
		$V_{CC} = 4.5 V$	-	250	-	kΩ
		V _{CC} = 6.0 V	-	150	-	kΩ

Phase-locked loop with VCO

Table 5. Static characteristics 74HC4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VCO sec	tion; T _{amb} = 25	٥C	1	•	1	
V _{IH}	HIGH-level	pin INH				
	input voltage	$V_{CC} = 3.0 V$	2.1	1.7	-	V
		$V_{CC} = 4.5 V$	3.15	2.4	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	V
V _{IL}	LOW-level	pin INH				
	input voltage	V _{CC} = 3.0 V	-	1.3	0.9	V
		$V_{CC} = 4.5 V$	-	2.1	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	V
V _{OH}	HIGH-level	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
·OH	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 3.0 \ V$	2.9	3.0	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V
V _{OL}	LOW-level output voltage	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
		$I_{O} = 20 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	V
		I _O = 4 mA; V _{CC} = 4.5 V	-	0.15	0.26	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
		pins C1A, C1B; $V_I = V_{IH}$ or V_{IL}				
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.40	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	-	0.40	V
l	input leakage	pins INH, VCO_IN; $V_I = V_{CC}$ or GND				
	current	$V_{CC} = 6.0 V$	-	-	±0.1	μA
R1	resistor 1	$V_{CC} = 3.0 \text{ V to } 6.0 \text{ V}$ [1]	3	-	300	kΩ
R2	resistor 2	$V_{CC} = 3.0 \text{ V to } 6.0 \text{ V}$ [1]	3	-	300	kΩ
C1	capacitor 1	$V_{CC} = 3.0 \text{ V} \text{ to } 6.0 \text{ V}$	40	-	no limit	pF
V _{VCO_IN}	voltage on pin VCO_IN	over the range specified for R1; for linearity see Figure 22 and 23				
		V _{CC} = 3.0 V	1.1	-	1.9	V
		$V_{CC} = 4.5 V$	1.1	-	3.4	V
		$V_{CC} = 6.0 V$	1.1	-	4.9	V

Phase-locked loop with VCO

Table 5. Static characteristics 74HC4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Demodu	lator section; 1	r _{amb} = 25 °C				
R _s series	series	at R_s > 300 k Ω , the leakage current can influence V _{DEM OUT}				
	resistance	V _{CC} = 3.0 V to 6.0 V	50	-	300	kΩ
V _{offset}	offset voltage	VCO_IN to V_{DEM_OUT} ; $V_I = V_{VCO_IN} = 0.5V_{CC}$; values taken over R_s range; see Figure 15				
		V _{CC} = 3.0 V	-	±30	-	mV
		V _{CC} = 4.5 V	-	±20	-	mV
		V _{CC} = 6.0 V	-	±10	-	mV
R _{dyn}	dynamic	DEM_OUT; V _{DEM_OUT} = 0.5V _{CC}				
	resistance	V _{CC} = 3.0 V to 6.0 V	-	25	-	Ω
General	; T _{amb} = 25 °C	1			+	+
I _{CC}	supply current	VCO disabled; pins COMP_IN, INH and SIG_IN at V _{CC} ; pin VCO_IN at GND; I _I at pins COMP_IN and SIGN_IN to be excluded				
		$V_{CC} = 6.0 V$	-	-	8.0	μA
Cı	input capacitance	pin INH	-	3.5	-	pF
Phase c	omparator sect	tion; T _{amb} = -40 °C to +85 °C				
V _{IH}	HIGH-level input voltage	pins SIG_IN, COMP_IN; DC coupled				
		V _{CC} = 2.0 V	1.5	-	-	V
		$V_{CC} = 4.5 V$	3.15	-	-	V
		$V_{CC} = 6.0 V$	4.2	-	-	V
V _{IL}	LOW-level	pins SIG_IN, COMP_IN; DC coupled				
	input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		$V_{CC} = 4.5 V$	-	-	1.35	V
		$V_{CC} = 6.0 V$	-	-	1.8	V
V _{OH}	HIGH-level	pins PCP_OUT, PCn_OUT; $V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V
V _{OL}	LOW-level	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}				
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V

Phase-locked loop with VCO

Table 5. Static characteristics 74HC4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l	input leakage	pins SIG_IN, COMP_IN; V _I = V _{CC} or GND				
	current	V _{CC} = 2.0 V	-	-	±4	μA
		V _{CC} = 3.0 V	-	-	±9	μA
		V _{CC} = 4.5 V	-	-	±23	μA
		V _{CC} = 6.0 V	-	-	±38	μA
I _{OZ}	OFF-state	pin PC2_OUT; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND				
	output current	V _{CC} = 6.0 V	-	-	±5	μA
VCO sec	ction; T _{amb} = -4	0 °C to +85 °C			1	
V _{IH}	HIGH-level	pin INH				
	input voltage	V _{CC} = 3.0 V	2.1	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level	pin INH				
VIL	input voltage	V _{CC} = 3.0 V	-	-	0.9	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \ \mu A; \ V_{CC} = 3.0 \ V$	2.9	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V
V _{OL}	LOW-level	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 3.0 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V
		pins C1A, C1B; $V_I = V_{IH}$ or V_{IL}				
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.47	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.47	V
l _l	input leakage	pins INH, VCO_IN; V _I = V _{CC} or GND				
	current	$V_{CC} = 6.0 V$	-	-	±1	μA
General	; T _{amb} = -40 °C	to +85 °C				
I _{CC}	supply current	VCO disabled; pins COMP_IN, INH and SIG_IN at V _{CC} ; pin VCO_IN at GND; I _I at pins COMP_IN and SIGN_IN to be excluded				
		$V_{CC} = 6.0 V$	-	-	80.0	μA

Phase-locked loop with VCO

Table 5. Static characteristics 74HC4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Phase c	omparator sect	tion; T _{amb} = –40 °C to +125 °C				
VIH	HIGH-level	pins SIG_IN, COMP_IN; DC coupled				
	input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level	pins SIG_IN, COMP_IN; DC coupled				
	input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}				
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
V _{OL}	LOW-level	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}				
	output voltage	$I_{O} = 20 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	-	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	-	0.4	V
l _l	input leakage	pins SIG_IN, COMP_IN; V _I = V _{CC} or GND				
	current	V _{CC} = 2.0 V	-	-	±5	μA
		V _{CC} = 3.0 V	-	-	±11	μA
		V _{CC} = 4.5 V	-	-	±27	μA
		V _{CC} = 6.0 V	-	-	±45	μA
I _{OZ}	OFF-state	pin PC2_OUT; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND				
	output current	V _{CC} = 6.0 V	-	-	±10	μA
VCO see	ction; T _{amb} = -4	0 °C to +125 °C				
V _{IH}	HIGH-level	pin INH				
	input voltage	V _{CC} = 3.0 V	2.1	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		$V_{CC} = 6.0 V$	4.2	-	-	V
V _{IL}	LOW-level	pin INH				
	input voltage	V _{CC} = 3.0 V	-	-	0.9	V
		V _{CC} = 4.5 V	-	-	1.35	V
		$V_{CC} = 6.0 V$	-	-	1.8	V

Phase-locked loop with VCO

Table 5. Static characteristics 74HC4046A

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 3.0 \ V$	2.9	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
V _{OL}	V _{OL} LOW-level	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 3.0 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
		pins C1A, C1B; $V_I = V_{IH}$ or V_{IL}				
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.54	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.54	V
l _l	input leakage	pins INH, VCO_IN; $V_I = V_{CC}$ or GND				
	current	$V_{CC} = 6.0 V$	-	-	±1	μA
General	; T _{amb} = −40 °C	to +125 °C				
I _{CC}	supply current	VCO disabled; pins COMP_IN, INH and SIG_IN at V_{CC} ; pin VCO_IN at GND; I _I at pins COMP_IN and SIGN_IN to be excluded				
		$V_{CC} = 6.0 V$	-	-	160.0	μA

[1] The parallel value of R1 and R2 should be more than 2.7 kΩ. Optimum performance is achieved when R1 and/ or R2 are/is > 10 kΩ.

Phase-locked loop with VCO

11.2 Static characteristics 74HCT4046A

Table 6. Static characteristics 74HCT4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Phase c	omparator sect	ion; T _{amb} = 25 °C				
V _{IH}	HIGH-level	pins SIG_IN, COMP_IN; DC coupled				
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	V
V _{IL}	LOW-level	pins SIG_IN, COMP_IN; DC coupled				
	input voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	V
V _{OH}	HIGH-level	pins PCP_OUT, PCn_OUT; $V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	V
		$I_{O} = -4 \ \mu A; \ V_{CC} = 4.5 \ V$	3.98	4.32	-	V
V _{OL}	LOW-level	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}				
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
l _l	input leakage	pins SIG_IN, COMP_IN; V _I = V _{CC} or GND				
	current	V _{CC} = 5.5 V	-	-	±30	μA
l _{oz}	OFF-state	pin PC2_OUT; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND				
	output current	V _{CC} = 5.5 V	-	-	±0.5	μA
RI	input	pins SIG_IN, COMP_IN; V _I at self-bias operating point;				
	resistance	$\Delta V_I = 0.5 V$; see Figure 12, 13 and 14				
		$V_{CC} = 4.5 V$	-	250	-	kΩ
VCO sec	ction; T _{amb} = 25	°C	1	1	1	
VIH	HIGH-level	pin INH				
	input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level	pin INH				
	input voltage	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	1.2	0.8	V
V _{OH}	HIGH-level	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
V _{OL}	LOW-level	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}				
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		pins C1A, C1B; $V_I = V_{IH}$ or V_{IL}				
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.40	V
l _l	input leakage current	pins INH, VCO_IN; V_{CC} = 5.5 V; V_I = V_{CC} or GND	-	-	±0.1	μA
R1	resistor 1	$V_{CC} = 4.5 \text{ V}$ [1]	3	-	300	kΩ
R2	resistor 2	V _{CC} = 4.5 V [1]	3	-	300	kΩ
C1	capacitor 1	$V_{CC} = 4.5 V$	40	-	no limit	pF
V _{VCO_IN}	voltage on pin VCO_IN	over the range specified for R1; for linearity see <u>Figure 22</u> and <u>23</u>				
		$V_{CC} = 4.5 V$	1.1	-	3.4	V
74HC_HCT4046	A	All information provided in this document is subject to legal disclaimers.		© Nexperia E	3.V. 2017. All r	ahts reserved

Phase-locked loop with VCO

Table 6. Static characteristics 74HCT4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Demodulator section; T _{amb} = 25 °C							
R _s	series	at R_s > 300 k $\Omega,$ the leakage current can influence V_{DEM_OUT}					
	resistance	$V_{CC} = 4.5 V$	50	-	300	kΩ	
V _{offset} offset v	offset voltage	VCO_IN to V_{DEM_OUT} ; $V_I = V_{VCO_IN} = 0.5V_{CC}$; values taken over R_s range; see Figure 15					
		$V_{CC} = 4.5 V$	-	±20	-	mV	
R _{dyn} c	dynamic resistance	$DEM_OUT; V_{DEM_OUT} = 0.5V_{CC}$					
		$V_{CC} = 4.5 V$	-	25	-	Ω	
General	; T _{amb} = 25 °C		·			·	
I _{CC} su	supply current	VCO disabled; pins COMP_IN, INH and SIG_IN at V _{CC} ; pin VCO_IN at GND; I _I at pins COMP_IN and SIGN_IN to be excluded					
		$V_{CC} = 6 V$	-	-	8.0	μA	
∆I _{CC} additio	additional supply current	pin INH; $V_I = V_{CC} - 2.1 V$; pins COMP_IN and SIG_IN at V_{CC} ; pin VCO_IN at GND; I_I at pins COMP_IN and SIGN_IN to be excluded					
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	100	360	μA	
Cı	input capacitance	pin INH	-	3.5	-	pF	
Phase co	Phase comparator section; T _{amb} = -40 °C to +85 °C						
V _{IH}	HIGH-level input voltage	pins SIG_IN, COMP_IN; DC coupled					
		$V_{CC} = 4.5 V$	3.15	-	-	V	
V _{IL}	LOW-level input voltage	pins SIG_IN, COMP_IN; DC coupled					
		$V_{CC} = 4.5 V$	-	-	1.35	V	
V _{OH}	HIGH-level output voltage	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}					
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V	
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V	
V _{OL}	LOW-level output voltage	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}					
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V	
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V	
l _l	input leakage current	pins SIG_IN, COMP_IN; V _I = V _{CC} or GND					
		V _{CC} = 5.5 V	-	-	±38	μA	
l _{oz}	OFF-state output current	pin PC2_OUT; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND					
		V _{CC} = 5.5 V	-	-	±5	μA	

Phase-locked loop with VCO

Table 6. Static characteristics 74HCT4046A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
VCO section; T _{amb} = -40 °C to +85 °C								
V _{IH}	HIGH-level input voltage	pin INH						
		V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V		
V _{IL}	LOW-level	pin INH						
	input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V		
V _{OH}	HIGH-level output voltage	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}						
		$I_{O} = -20 \ \mu A; V_{CC} = 4.5 \ V$	4.4	-	-	V		
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V		
V _{OL}	LOW-level	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}						
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V		
		I _O = 4 mA; V _{CC} = 4.5 V	-	-	0.33	V		
		pins C1A, C1B; $V_I = V_{IH}$ or V_{IL}						
		$I_0 = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.47	٧		
l _l	input leakage current	pins INH, VCO_IN; V _I = V _{CC} or GND						
		V _{CC} = 5.5 V	-	-	±1	μA		
General	; T _{amb} = -40 °C	to +85 °C				-		
I _{CC} s	supply current	VCO disabled; pins COMP_IN, INH and SIG_IN at V_{CC} ; pin VCO_IN at GND; I _I at pins COMP_IN and SIGN_IN to be excluded						
		V _{CC} = 6 V	-	-	80.0	μA		
∆l _{CC} addi supp	additional supply current	pin INH; $V_I = V_{CC} - 2.1$ V; pins COMP_IN and SIG_IN at V_{CC} ; pin VCO_IN at GND; I_I at pins COMP_IN and SIGN_IN to be excluded						
		V _{CC} = 4.5 V to 5.5 V	-	-	450	μA		
Phase c	omparator sect	ion; T _{amb} = -40 °C to +125 °C						
V _{IH}	HIGH-level input voltage	pins SIG_IN, COMP_IN; DC coupled						
		V _{CC} = 4.5 V	3.15	-	-	V		
V _{IL}	LOW-level input voltage	pins SIG_IN, COMP_IN; DC coupled						
		$V_{CC} = 4.5 V$	-	-	1.35	V		
V _{OH}	HIGH-level output voltage	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}						
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V		
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V		
V _{OL}	LOW-level output voltage	pins PCP_OUT, PCn_OUT; V _I = V _{IH} or V _{IL}						
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	V		
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V		
lı	input leakage current	pins SIG_IN, COMP_IN; $V_I = V_{CC}$ or GND						
		V _{CC} = 5.5 V	-	-	±45	μA		
I _{OZ}	OFF-state output current	pin PC2_OUT; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND						
		V _{CC} = 5.5 V	-	-	±10	μA		

Phase-locked loop with VCO

Table 6. Static characteristics 74HCT4046A

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
VCO section; T _{amb} = -40 °C to +125 °C								
V _{IH}	HIGH-level input voltage	pin INH						
		V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V		
V _{IL}	LOW-level input voltage	pin INH						
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	0.8	V		
V _{OH}	HIGH-level output voltage	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}						
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	-	-	V		
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V		
V _{OL}	LOW-level output voltage	pin VCO_OUT; $V_I = V_{IH}$ or V_{IL}						
		$I_{O} = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	-	0.1	٧		
		$I_0 = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	٧		
		pins C1A, C1B; $V_I = V_{IH}$ or V_{IL}						
		$I_0 = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.54	٧		
lı	input leakage current	pins INH, VCO_IN; V _I = V _{CC} or GND						
		V _{CC} = 5.5 V	-	-	±1	μA		
General	; T _{amb} = -40 °C	to +125 °C						
I _{CC}	supply current	VCO disabled; pins COMP_IN, INH and SIG_IN at V_{CC} ; pin VCO_IN at GND; I _I at pins COMP_IN and SIGN_IN to be excluded						
		V _{CC} = 6 V	-	-	160.0	μA		
Δl _{CC}	additional supply current	pin INH; $V_I = V_{CC} - 2.1$ V; pins COMP_IN and SIG_IN at V_{CC} ; pin VCO_IN at GND; I_I at pins COMP_IN and SIGN_IN to be excluded						
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	-	-	490	μA		

[1] The parallel value of R1 and R2 should be more than 2.7 kΩ. Optimum performance is achieved when R1 and/ or R2 are/is > 10 kΩ.

Phase-locked loop with VCO

Phase-locked loop with VCO

12. Dynamic characteristics

12.1 Dynamic characteristics 74HC4046A

Table 7. Dynamic characteristics 74HC4046A^[1]

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Phase comparator section; T _{amb} = 25 °C							
t _{pd}	propagation	pins SIG_IN, COMP_IN to PC1_OUT; see Figure 16					
	delay	V _{CC} = 2.0 V	-	63	200	ns	
		V _{CC} = 4.5 V	-	23	40	ns	
		V _{CC} = 6.0 V	-	18	34	ns	
		pins SIG_IN, COMP_IN to PCP_OUT; see Figure 16					
		V _{CC} = 2.0 V	-	96	340	ns	
		V _{CC} = 4.5 V	-	35	68	ns	
		V _{CC} = 6.0 V	-	28	58	ns	
		pins SIG_IN, COMP_IN to PC3_OUT; see Figure 16 [1]					
		V _{CC} = 2.0 V	-	77	270	ns	
		V _{CC} = 4.5 V	-	28	54	ns	
		V _{CC} = 6.0 V	-	22	46	ns	
t _{en}	enable time	pins SIG_IN, COMP_IN to PC2_OUT; see Figure 17 [1]					
		V _{CC} = 2.0 V	-	83	280	ns	
		V _{CC} = 4.5 V	-	30	56	ns	
		V _{CC} = 6.0 V	-	24	48	ns	
t _{dis}	disable time	pins SIG_IN, COMP_IN to PC2_OUT; see Figure 17 [1]					
		V _{CC} = 2.0 V	-	99	325	ns	
		V _{CC} = 4.5 V	-	36	65	ns	
		V _{CC} = 6.0 V	-	29	55	ns	
t _t	transition time	see Figure 16 [1]					
		V _{CC} = 2.0 V	-	19	75	ns	
		V _{CC} = 4.5 V	-	7	15	ns	
		V _{CC} = 6.0 V	-	6	13	ns	
V _{i(p-p)}	peak-to-peak	pins SIGN_IN, COMP_IN; AC coupled; f _i = 1 MHz					
	input voltage	V _{CC} = 2.0 V	-	9	-	mV	
		V _{CC} = 3.0 V	-	11	-	mV	
		V _{CC} = 4.5 V	-	15	-	mV	
		V _{CC} = 6.0 V	-	33	-	mV	

Phase-locked loop with VCO

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VCO sect	ion; T _{amb} = 25 °C						_
f ₀	center frequency	$V_{VCO_IN} = 0.5V_{CC}$; duty cycle = 50 %; R1 = 3 k Ω ; R2 = $\infty \Omega$; C1 = 40 pF; see Figure 20 and Figure 21					
		V _{CC} = 3.0 V		7.0	10.0	-	MHz
		V _{CC} = 4.5 V		11.0	17.0	-	MHz
		V _{CC} = 5.0 V		-	19.0	-	MHz
		V _{CC} = 6.0 V		13.0	21.0	-	MHz
Δf/f	relative frequency	R1 = 100 k Ω ; R2 = $\infty \Omega$; C1 = 100 pF; see <u>Figure 22</u> and <u>Figure 23</u>					
	variation	V _{CC} = 3.0 V		-	1.0	-	%
		$V_{CC} = 4.5 V$		-	0.4	-	%
		V _{CC} = 6.0 V		-	0.3	-	%
δ	duty cycle	pin VCO_OUT; V_{CC} = 3.0 V to 6.0 V		-	50	-	%
General;	T _{amb} = 25 °C						
C _{PD}	power dissipation capacitance		<u>[3]</u>	-	24	-	pF
Phase co	mparator sectior	n; T _{amb} = -40 °C to +85 °C					
t _{pd}	$\begin{array}{c} \text{propagation} \\ \text{delay} \end{array} \begin{array}{c} \text{pins SIG} \\ \hline V_{CC} = \\ V_{CC} = \\ V_{CC} = \\ \hline v_{CC$	pins SIG_IN, COMP_IN to PC1_OUT; see Figure 16	<u>[1]</u>				
		V _{CC} = 2.0 V		-	-	250	ns
		V _{CC} = 4.5 V		-	-	50	ns
		V _{CC} = 6.0 V		-	-	43	ns
		pins SIG_IN, COMP_IN to PCP_OUT; see Figure 16	<u>[1]</u>				
		$V_{CC} = 2.0 V$		-	-	425	ns
		$V_{CC} = 4.5 V$		-	-	85	ns
		$V_{CC} = 6.0 V$		-	-	72	ns
		pins SIG_IN, COMP_IN to PC3_OUT; see Figure 16	[1]				
		V _{CC} = 2.0 V		-	-	340	ns
		V _{CC} = 4.5 V		-	-	68	ns
		$V_{CC} = 6.0 V$		-	-	58	ns
t _{en}	enable time	pins SIG_IN, COMP_IN to PC2_OUT; see Figure 17	[1]				
		V _{CC} = 2.0 V		-	-	350	ns
		V _{CC} = 4.5 V		-	-	70	ns
		V _{CC} = 6.0 V		-	-	60	ns
t _{dis}	disable time	pins SIG_IN, COMP_IN to PC2_OUT; see Figure 17	[1]				
		V _{CC} = 2.0 V		-	-	405	ns
		V _{CC} = 4.5 V		-	-	81	ns
		$V_{CC} = 6.0 V$		-	-	69	ns

Dynamic characteristics 74HC4046A^[1] ...continued Table 7.

74HC_HCT4046A