

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74HC4053; 74HCT4053 Triple 2-channel analog multiplexer/demultiplexer Rev. 9 — 10 February 2016 Prod

Product data sheet

General description

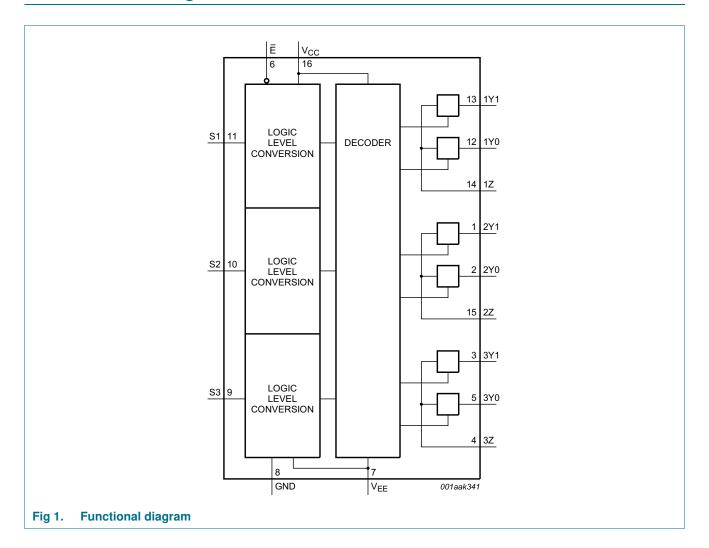
The 74HC4053; 74HCT4053 is a triple single-pole double-throw analog switch (3x SPDT) suitable for use in analog or digital 2:1 multiplexer/demultiplexer applications. Each switch features a digital select input (Sn), two independent inputs/outputs (nY0 and nY1) and a common input/output (nZ). A digital enable input (E) is common to all switches. When E is HIGH, the switches are turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

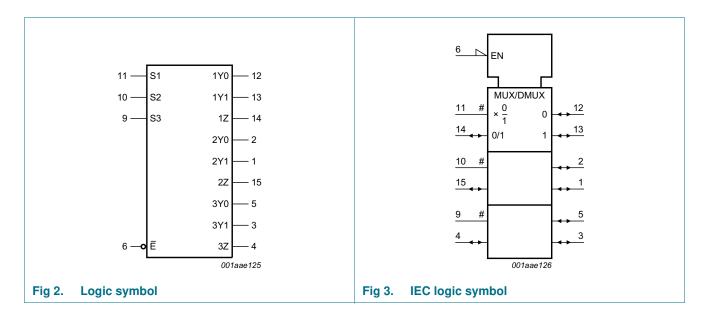
Features and benefits 2.

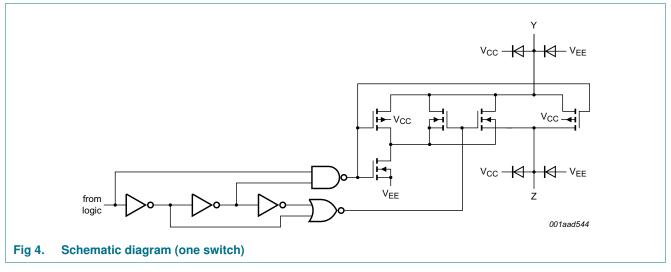
- Wide analog input voltage range from -5 V to +5 V
- Complies with JEDEC standard no. 7A
- Low ON resistance:
 - 80 Ω (typical) at $V_{CC} V_{EE} = 4.5 \text{ V}$
 - 70 Ω (typical) at $V_{CC} V_{EE} = 6.0 \text{ V}$
 - 60 Ω (typical) at V_{CC} V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ±5 V analog signals
- Typical 'break before make' built-in
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

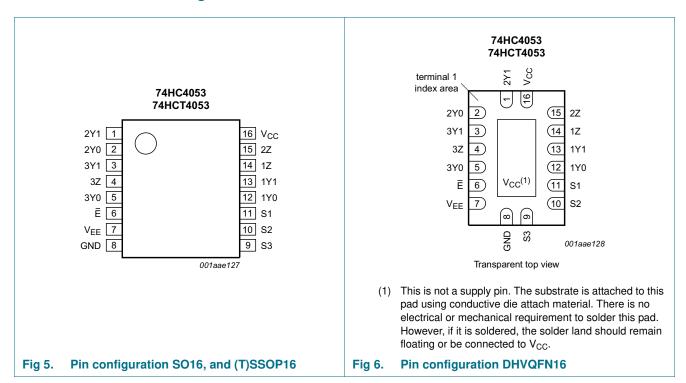



4. Ordering information


Table 1. Ordering information

Type number	Package	Package								
	Temperature range Name		Description	Version						
74HC4053D	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1						
74HCT4053D			body width 3.9 mm							
74HC4053DB	-40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads;	SOT338-1						
74HCT4053DB			body width 5.3 mm							
74HC4053PW	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads;	SOT403-1						
74HCT4053PW			body width 4.4 mm							
74HC4053BQ	-40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very	SOT763-1						
74HCT4053BQ			thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm							

5. Functional diagram



6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Ē	6	enable input (active LOW)
V _{EE}	7	supply voltage
GND	8	ground supply voltage
S1, S2, S3	11, 10, 9	select input
1Y0, 2Y0, 3Y0	12, 2, 5	independent input or output
1Y1, 2Y1, 3Y1	13, 1, 3	independent input or output
1Z, 2Z, 3Z	14, 15, 4	common output or input
V _{CC}	16	supply voltage

7. Functional description

Table 3. Function table [1]

Inputs		Channel on
Ē	Sn	
L	L	nY0 to nZ
L	Н	nY1 to nZ
Н	X	switches off

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V (ground)}$.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage	[1]	-0.5	+11.0	V
I _{IK}	input clamping current	$V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{SK}	switch clamping current	$V_{SW} < -0.5 \text{ V or } V_{SW} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{SW}	switch current	$-0.5 \text{ V} < \text{V}_{\text{SW}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{EE}	supply current		-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-	-50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	SO16, (T)SSOP16, and DHVQFN16 package	-	500	mW
Р	power dissipation	per switch	-	100	mW

^[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows into terminals nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{CC} current will flow out of terminals nYn, and in this case there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed V_{CC} or V_{EE} .

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol Parameter		Conditions	Conditions 74HC4053		74HCT4053			Unit	
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage	see Figure 7 and Figure 8							
		V _{CC} – GND	2.0	5.0	10.0	4.5	5.0	5.5	V
		V _{CC} - V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V
VI	input voltage		GND	-	V _{CC}	GND	-	V _{CC}	V
V_{SW}	switch voltage		V _{EE}	-	V _{CC}	V _{EE}	-	V _{CC}	V

74HC HCT4053

All information provided in this document is subject to legal disclaimers.

^[2] For SO16 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For SSOP16 and TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K. For DHVQFN16 packages: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

 Table 5.
 Recommended operating conditions ...continued

Symbol Parameter		Conditions	Conditions 74HC4053		74HCT4053			Unit	
			Min	Тур	Max	Min	Тур	Max	
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	$\Delta t/\Delta V$ input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 \text{ V}$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V
		$V_{CC} = 10.0 \text{ V}$	-	-	31	-	-	-	ns/V

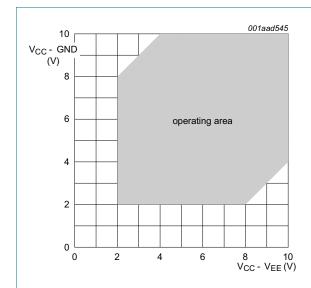


Fig 7. Guaranteed operating area as a function of the supply voltages for 74HC4053

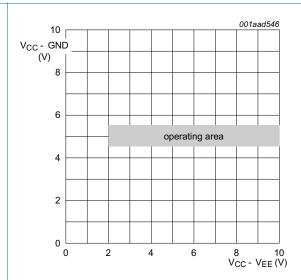


Fig 8. Guaranteed operating area as a function of the supply voltages for 74HCT4053

10. Static characteristics

Table 6. R_{ON} resistance per switch for 74HC4053 and 74HCT4053

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see Figure 9.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

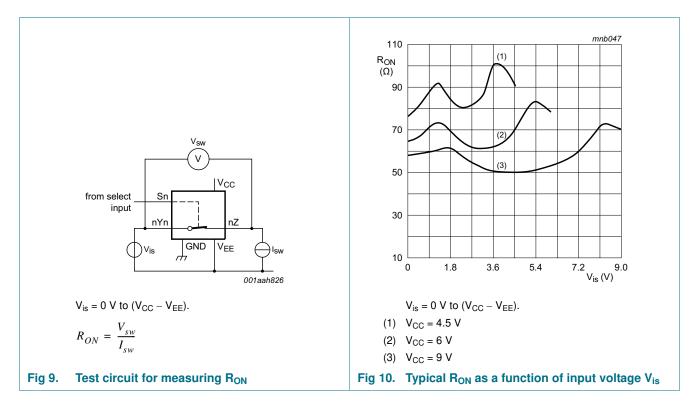
For 74HC4053: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

For 74HCT4053: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
T _{amb} = 25	°C						
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}					
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 100 \mu\text{A}$	<u>[1]</u>	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	100	180	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	90	160	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	70	130	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$					
	$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$ - 70 130	Ω					
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	80	140	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	70	120	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	60	105	Ω
		$V_{is} = V_{CC}$					
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 100 \mu\text{A}$	<u>[1]</u>	-	150	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	90	160	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	80	140	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	65	120	Ω
∆R _{ON}	ON resistance mismatch	$V_{is} = V_{CC}$ to V_{EE}					
	between channels	V _{CC} = 2.0 V; V _{EE} = 0 V	<u>[1]</u>	-	-	-	Ω
		V _{CC} = 4.5 V; V _{EE} = 0 V		-	9	-	Ω
		V _{CC} = 6.0 V; V _{EE} = 0 V		-	8	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$		-	6	-	Ω
$\Gamma_{amb} = -4$	0 °C to +85 °C		·				
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}					
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 100 \mu\text{A}$	<u>[1]</u>	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	225	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	200	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	165	Ω

R_{ON} resistance per switch for 74HC4053 and 74HCT4053 ...continued

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see <u>Figure 9</u>.


Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

For 74HC4053: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. For 74HCT4053: V_{CC} – GND = 4.5 V and 5.5 V, V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$					
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[1]	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	175	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	-	150	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	130	Ω
		$V_{is} = V_{CC}$					
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 100 \mu\text{A}$	[1]	-	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	-	200	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	-	175	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	150	Ω
$T_{amb} = -4$	0 °C to +125 °C	,					
R _{ON(peak)}	ON resistance (peak)	$V_{is} = V_{CC}$ to V_{EE}					
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μA	[1]	-	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	-	270	Ω
		V_{CC} = 6.0 V; V_{EE} = 0 V; I_{SW} = 1000 μA		-	-	240	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V; I_{SW} = 1000 μA		-	-	195	Ω
R _{ON(rail)}	ON resistance (rail)	$V_{is} = V_{EE}$					
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μ A	[1]	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	210	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	180	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	160	Ω
		$V_{is} = V_{CC}$					
		V_{CC} = 2.0 V; V_{EE} = 0 V; I_{SW} = 100 μ A	[1]	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	240	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	210	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$		-	-	180	Ω

^[1] When supply voltages (V_{CC} - V_{EE}) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V, it is recommended to use these devices only for transmitting digital signals.

Table 7. Static characteristics for 74HC4053

Voltages are referenced to GND (ground = 0 V).

Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V _{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	1.2	-	V
	voltage	V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
		V _{CC} = 9.0 V	6.3	4.7	7 -	V
V _{IL}	LOW-level input	V _{CC} = 2.0 V	-	0.8	0.5	V
	voltage	V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	V
		V _{CC} = 9.0 V	-	4.3	2.7	V
l _l	input leakage current	$V_{EE} = 0 \text{ V}; V_{I} = V_{CC} \text{ or GND}$				
		V _{CC} = 6.0 V	-	-	±0.1	μΑ
		V _{CC} = 10.0 V	-	-	±0.2	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{ see } Figure 11$				
		per channel	-	-	±0.1	μΑ
		all channels	-	-	±0.1	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH} \text{ or } V_{IL}; V_{SW} = V_{CC} - V_{EE};$ $V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; \text{ see } \frac{\text{Figure } 12}{\text{Figure } 12}$	-	-	±0.1	μΑ

Table 7. Static characteristics for 74HC4053 ...continued

Voltages are referenced to GND (ground = 0 V).

V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	V_{EE} = 0 V; V_{I} = V_{CC} or GND; V_{is} = V_{EE} or V_{CC} ; V_{os} = V_{CC} or V_{EE}				
		V _{CC} = 6.0 V	-	-	8.0	μА
		V _{CC} = 10.0 V	-	-	16.0	μА
Cı	input capacitance		-	3.5	-	pF
C _{sw}	switch capacitance	independent pins nYn	-	5	-	pF
		common pins nZ	-	8	-	pF
T _{amb} = -40) °C to +85 °C				1	
V _{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	-	-	V
	voltage	V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	LOW-level input	V _{CC} = 2.0 V	-	-	0.5	V
	voltage	V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
		V _{CC} = 9.0 V	-	-	2.7	V
I _I	input leakage current	$V_{EE} = 0 \text{ V}; V_{I} = V_{CC} \text{ or GND}$				
		V _{CC} = 6.0 V	-	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{ see } Figure 11$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μА
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $ V_{SW} = V_{CC} - V_{EE}$; $V_{CC} = 10.0$ V; $V_{EE} = 0$ V; see Figure 12	-	-	±1.0	μΑ
I _{CC}	supply current	V_{EE} = 0 V; V_{I} = V_{CC} or GND; V_{is} = V_{EE} or V_{CC} ; V_{os} = V_{CC} or V_{EE}				
		V _{CC} = 6.0 V	-	-	80.0	μΑ
		V _{CC} = 10.0 V	-	-	160.0	μА
T _{amb} = -40	°C to +125 °C				1	
V _{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	-	-	V
	voltage	V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	LOW-level input	V _{CC} = 2.0 V	-	-	0.5	V
	voltage	V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
		$V_{CC} = 9.0 \text{ V}$	-	-	2.7	V

Table 7. Static characteristics for 74HC4053 ... continued

Voltages are referenced to GND (ground = 0 V).

V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

 V_{os} is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _I	input leakage current	V _{EE} = 0 V; V _I = V _{CC} or GND				
		V _{CC} = 6.0 V	-	-	±1.0	μΑ
		V _{CC} = 10.0 V	-	-	±2.0	μΑ
I _{S(OFF)} OFF-state leaka	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{see } Figure 11$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; $ V_{SW} = V_{CC} - V_{EE}$; $V_{CC} = 10.0$ V; $V_{EE} = 0$ V; see Figure 12	-	-	±1.0	μА
I _{CC}	supply current	V_{EE} = 0 V; V_{I} = V_{CC} or GND; V_{is} = V_{EE} or V_{CC} ; V_{os} = V_{CC} or V_{EE}				
		V _{CC} = 6.0 V	-	-	160.0	μΑ
		V _{CC} = 10.0 V	-	-	320.0	μΑ

Table 8. Static characteristics for 74HCT4053

Voltages are referenced to GND (ground = 0 V).

Vis is the input voltage at pins nYn or nZ, whichever is assigned as an input.

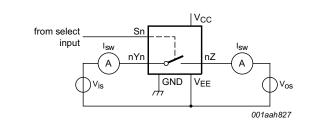

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C				ı	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±0.1	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{see } Figure 11$				
		per channel	-	-	±0.1	μА
		all channels	-	-	±0.1	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{see Figure 12}$	-	-	±0.1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	8.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	16.0	μΑ
Δl _{CC}	additional supply current	per input; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V ; $V_{EE} = 0 \text{ V}$	-	50	180	μΑ
Cı	input capacitance		-	3.5	-	pF
C _{sw}	switch capacitance	independent pins nYn	-	5	-	pF
		common pins nZ	-	8	-	pF

Table 8. Static characteristics for 74HCT4053 ...continued

Voltages are referenced to GND (ground = 0 V).

 V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input.

Symbol			Min	Тур	Max	Unit
T _{amb} = -40	0 °C to +85 °C				-	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{see } Figure 11$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{see } Figure 12$	-	-	±1.0	μА
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	80.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	160.0	μΑ
ΔI_{CC}	additional supply current	per input; $V_I = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$	-	-	225	μА
T _{amb} = -4	0 °C to +125 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{see } Figure 11$				
		per channel	-	-	±1.0	μΑ
		all channels	-	-	±1.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_{I} = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{see Figure 12}$	-	-	±1.0	μА
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	160.0	μΑ
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	320.0	μΑ
ΔI_{CC}	additional supply current	per input; $V_1 = V_{CC} - 2.1 \text{ V}$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V ; $V_{EE} = 0 \text{ V}$	-	-	245	μА

 $V_{is} = V_{CC}$ and $V_{os} = V_{EE}$. $V_{is} = V_{EE}$ and $V_{os} = V_{CC}$.

Fig 11. Test circuit for measuring OFF-state current

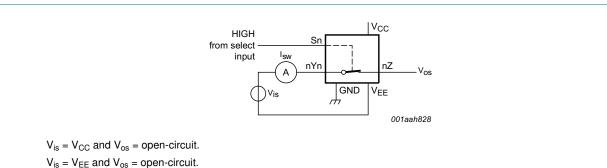


Fig 12. Test circuit for measuring ON-state current

11. Dynamic characteristics

Table 9. Dynamic characteristics for 74HC4053

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see Figure 15.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see <u>Figure 13</u> [1]				
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	15	60	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	5	12	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	4	10	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	4	8	ns

Table 9. Dynamic characteristics for 74HC4053 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{on}	turn-on time	\overline{E} to $V_{os}; R_{L} = \infty \ \Omega; see \ \underline{Figure} \ 14$				
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	60	220	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	20	44	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	17	-	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	16	37	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		Sn to V_{os} ; $R_L = \infty \Omega$; see Figure 14				
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	75	220	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	25	44	ns
		V _{CC} = 5.0 V; V _{EE} = 0 V; C _L = 15 pF	-	21	-	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	20	37	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	15	31	ns
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	63	210	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	21	42	ns
		V _{CC} = 5.0 V; V _{EE} = 0 V; C _L = 15 pF	-	18	-	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	17	36	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	15	29	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	60	210	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	20	42	ns
		V _{CC} = 5.0 V; V _{EE} = 0 V; C _L = 15 pF	-	17	-	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	16	36	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	15	29	ns
C _{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC}	-	36	-	pF
$T_{amb} = -4$	0 °C to +85 °C			I	I	
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13				
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	75	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	15	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	13	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	10	ns

Table 9. Dynamic characteristics for 74HC4053 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{on}	turn-on time	\overline{E} to $V_{os};R_{L}=\infty\Omega;see\underline{Figure14}$	[2]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	275	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	55	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	47	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	39	ns
		Sn to V_{os} ; $R_L = \infty \Omega$; see Figure 14	[2]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	275	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	55	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	47	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	39	ns
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	265	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	53	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	45	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	36	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14	[3]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	265	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	53	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	45	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	36	ns
T _{amb} = -4	40 °C to +125 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13	[1]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	90	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	18	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	15	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	12	ns
t _{on}	turn-on time	\overline{E} to $V_{os};R_{L}=\infty\Omega;see\underline{Figure14}$	[2]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	330	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	66	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	56	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	47	ns
		Sn to V_{os} ; $R_L = \infty \Omega$; see Figure 14	[2]			
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	330	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	66	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	56	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	47	ns

Table 9. Dynamic characteristics for 74HC4053 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{off}	turn-off time	\overline{E} to V _{os} ; R _L = 1 k Ω ; see <u>Figure 14</u>				
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	315	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	63	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	54	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	44	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 2.0 V; V _{EE} = 0 V	-	-	315	ns
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	63	ns
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	54	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	44	ns

- [1] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [2] ton is the same as tPZH and tPZL.
- [3] t_{off} is the same as t_{PHZ} and t_{PLZ} .
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\}$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

N = number of inputs switching;

 $\Sigma \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = sum \text{ of outputs};$

C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

 V_{CC} = supply voltage in V.

Table 10. Dynamic characteristics for 74HCT4053

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	5 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	5	12	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	4	8	ns
t _{on}	turn-on time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	27	48	ns
		V _{CC} = 5.0 V; V _{EE} = 0 V; C _L = 15 pF	-	23	-	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	16	34	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	25	48	ns
		V _{CC} = 5.0 V; V _{EE} = 0 V; C _L = 15 pF	-	21	-	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	16	34	ns

74HC HCT4053

All information provided in this document is subject to legal disclaimers

Table 10. Dynamic characteristics for 74HCT4053 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

 V_{is} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see $\underline{Figure 14}$				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	24	44	ns
		V _{CC} = 5.0 V; V _{EE} = 0 V; C _L = 15 pF	-	20	-	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	22	44	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V}; C_L = 15 \text{ pF}$	-	19	-	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	15	31	ns
C_{PD}	power dissipation capacitance	per switch; $V_I = GND$ to $V_{CC} - 1.5 V$	-	36	-	pF
$T_{amb} = -4$	0 °C to +85 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	15	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	10	ns
t _{on}	turn-on time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	60	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	43	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	60	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	43	ns
t _{off}	turn-off time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	55	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	55	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	39	ns
$T_{amb} = -4$	0 °C to +125 °C					
t _{pd}	propagation delay	V_{is} to V_{os} ; $R_L = \infty \Omega$; see Figure 13				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	18	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	12	ns
t _{on}	turn-on time	\overline{E} to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	72	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	51	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	-	72	ns
		V _{CC} = 4.5 V; V _{EE} = -4.5 V	-	-	51	ns

Table 10. Dynamic characteristics for 74HCT4053 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF;$ for test circuit see <u>Figure 15</u>.

Vis is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

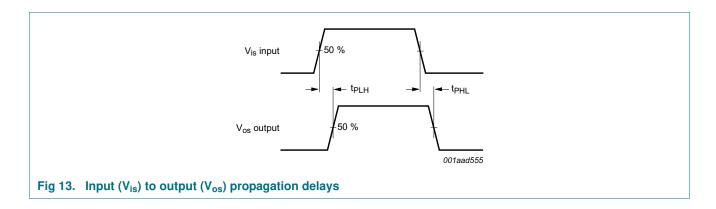
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{off}	turn-off time	\overline{E} to V _{os} ; R _L = 1 k Ω ; see <u>Figure 14</u>				
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	66	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	47	ns
		Sn to V_{os} ; $R_L = 1 \text{ k}\Omega$; see Figure 14				
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	66	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-	47	ns

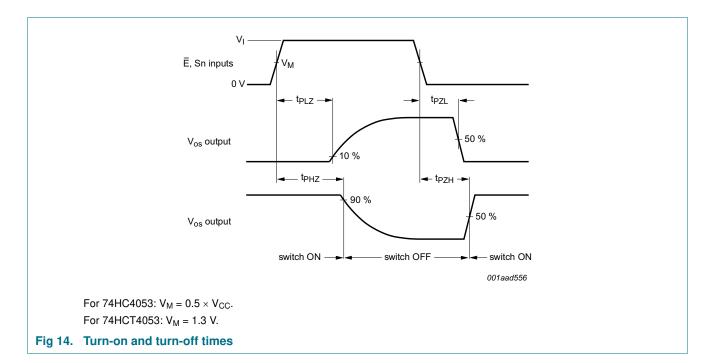
- [1] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [2] ton is the same as tPZH and tPZL.
- [3] t_{off} is the same as t_{PHZ} and t_{PLZ} .
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma \{(C_L + C_{sw}) \times V_{CC}{}^2 \times f_o\} \text{ where: }$$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;


N = number of inputs switching;


 $\Sigma \{(C_L + C_{sw}) \times V_{CC}^2 \times f_o\} = sum of outputs;$

C_L = output load capacitance in pF;

C_{sw} = switch capacitance in pF;

 V_{CC} = supply voltage in V.

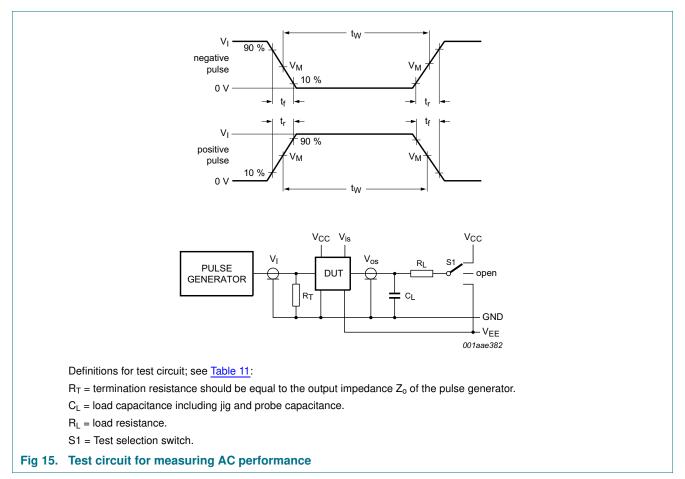


Table 11. Test data

Test	Input			Load	Load		
	VI	V _{is}	t _r , t _f		CL	R _L	
			at f _{max}	other[1]			
t _{PHL} , t _{PLH}	[2]	pulse	< 2 ns	6 ns	50 pF	1 kΩ	open
t_{PZH},t_{PHZ}	[2]	V _{CC}	< 2 ns	6 ns	50 pF	1 kΩ	V _{EE}
t_{PZL}, t_{PLZ}	[2]	V _{EE}	< 2 ns	6 ns	50 pF	1 kΩ	V _{CC}

- [1] $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r and t_f with 50 % duty factor.
- [2] V_I values:
 - a) For 74HC4053: $V_I = V_{CC}$
 - b) For 74HCT4053: $V_1 = 3 V$

11.1 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

Recommended conditions and typical values; $GND = 0 \ V$; $T_{amb} = 25 \ ^{\circ}C$; $C_L = 50 \ pF$. V_{is} is the input voltage at pins nYn or nZ, whichever is assigned as an input. V_{os} is the output voltage at pins nYn or nZ, whichever is assigned as an output.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
d _{sin}	sine-wave distortion	$f_i = 1 \text{ kHz}$; $R_L = 10 \text{ k}\Omega$; see Figure 16					
		$V_{is} = 4.0 \text{ V (p-p)}; V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$		-	0.04	-	%
		$V_{is} = 8.0 \text{ V (p-p)}; V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$		-	0.02	-	%
		$f_i = 10 \text{ kHz}$; $R_L = 10 \text{ k}\Omega$; see Figure 16					
		$V_{is} = 4.0 \text{ V (p-p)}; V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$		-	0.12	-	%
		$V_{is} = 8.0 \text{ V (p-p)}; V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$		-	0.06	-	%
$lpha_{iso}$	isolation (OFF-state)	$R_L = 600 \Omega$; $f_i = 1 MHz$; see Figure 17					
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[1]	-	-50	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[1]	-	-50	-	dB
Xtalk	crosstalk	between two switches/multiplexers; $R_L = 600 \Omega$; $f_i = 1 MHz$; see Figure 18					
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[1]	-	-60	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[1]	-	-60	-	dB
V _{ct}	crosstalk voltage	peak-to-peak value; between control and any switch; $R_L = 600 \ \Omega$; $f_i = 1 \ MHz$; \overline{E} or Sn square wave between V_{CC} and GND; $t_r = t_f = 6 \ ns$; see Figure 19					
		V _{CC} = 4.5 V; V _{EE} = 0 V		-	110	-	mV
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$		-	220	-	mV
f _(-3dB)	-3 dB frequency response	$R_L = 50 \Omega$; see Figure 20					
		$V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	[2]	-	160	-	MHz
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	[2]	-	170	-	MHz

- [1] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- [2] Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

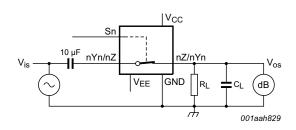
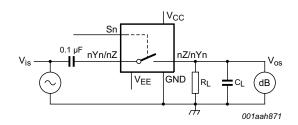
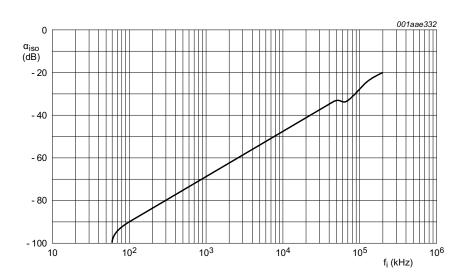
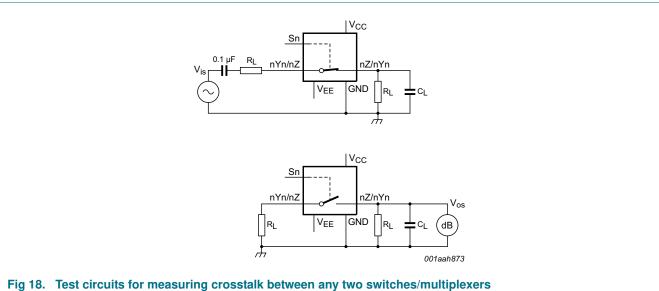




Fig 16. Test circuit for measuring sine-wave distortion


 V_{CC} = 4.5 V; GND = 0 V; V_{EE} = –4.5 V; R_L = 600 $\Omega;$ R_S = 1 $k\Omega.$

a. Test circuit

b. Isolation (OFF-state) as a function of frequency

Fig 17. Test circuit for measuring isolation (OFF-state)

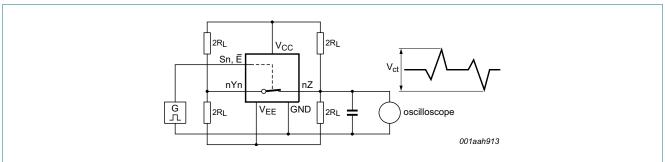
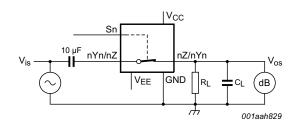
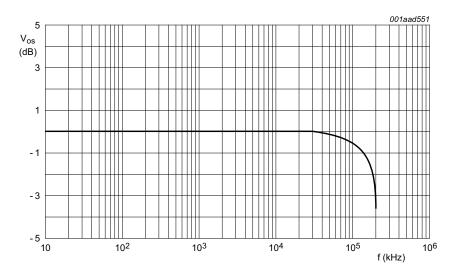




Fig 19. Test circuit for measuring crosstalk between control input and any switch

 V_{CC} = 4.5 V; GND = 0 V; V_{EE} = –4.5 V; R_L = 50 $\Omega;$ R_S = 1 $k\Omega.$

a. Test circuit

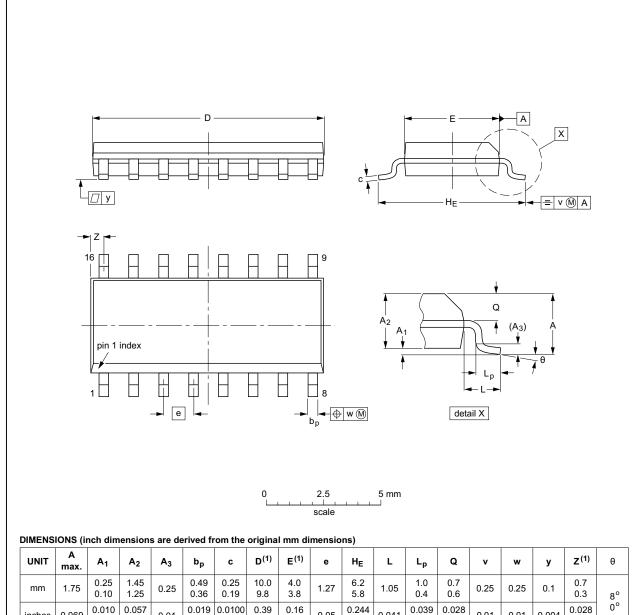

b. Typical frequency response

Fig 20. Test circuit for frequency response

12. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

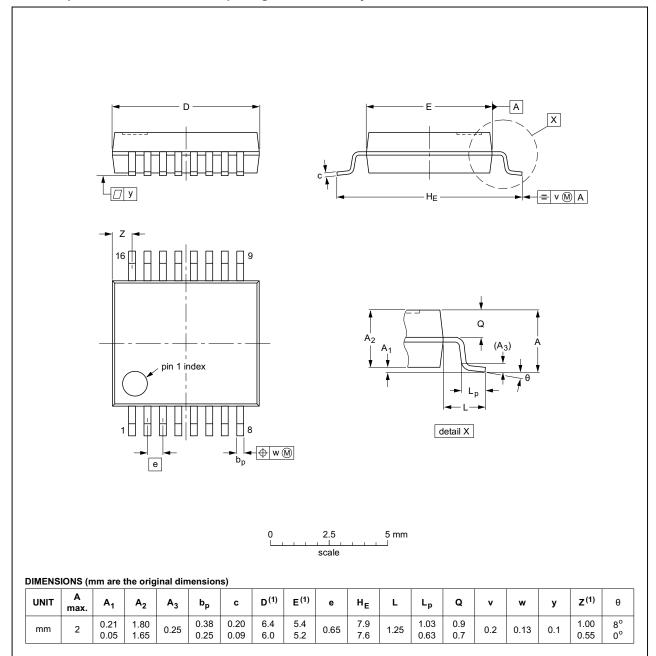
SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19


Fig 21. Package outline SOT109-1 (SO16)

74HC_HCT4053

All information provided in this document is subject to legal disclaimers

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT338-1		MO-150				99-12-27 03-02-19

Fig 22. Package outline SOT338-1 (SSOP16)

74HC_HCT4053

All information provided in this document is subject to legal disclaimers.