imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Quad single-pole single-throw analog switch Rev. 3 — 2 January 2017

Product data sheet

1. **General description**

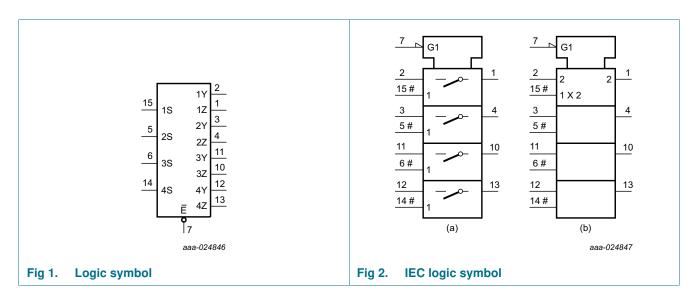
The 74HC4316; 74HCT4316 is a quad single pole, single throw analog switch (SPST). Each switch features two input/output terminals (nY and nZ) and an active HIGH enable input (nS). When nS is LOW, the analog switch is turned off. When E is HIGH all four analog switches are turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

Features and benefits 2.

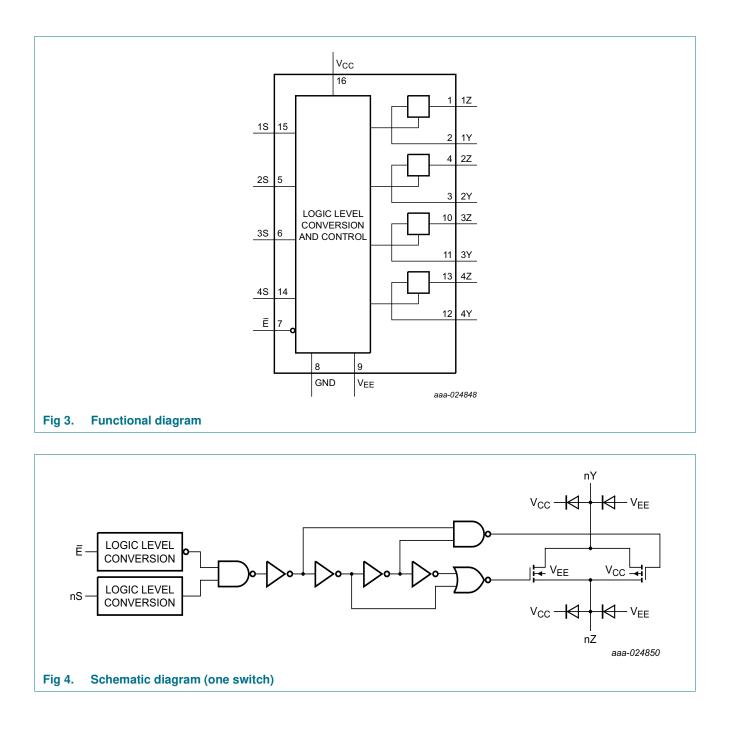
- Input levels E and nS inputs:
 - For 74HC4316: CMOS level
 - For 74HCT4316: TTL level
- Low ON resistance:
 - 160 Ω (typical) at V_{CC} V_{EE} = 4.5 V
 - 120 Ω (typical) at V_{CC} V_{EE} = 6.0 V
 - 80 Ω (typical) at V_{CC} V_{EE} = 9.0 V
- Logic level translation:
 - To enable 5 V logic to communicate with ±5 V analog signals
- Typical break-before-make built in
- Specified in compliance with JEDEC standard no. 7A
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Applications 3.

- Signal gating
- Modulation
- Demodulation
- Chopper

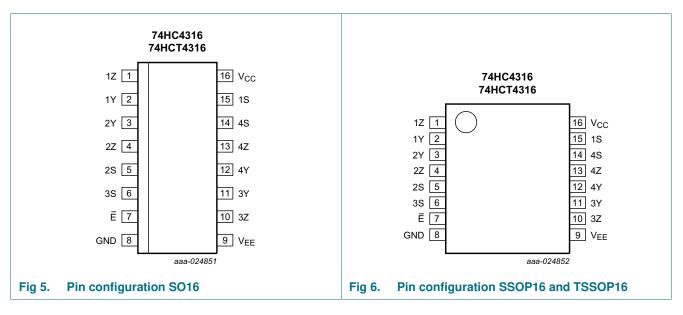

Quad single-pole single-throw analog switch

4. Ordering information


Table 1. Ordering information

Type number	Package						
	Temperature range	Name	Description	Version			
74HC4316D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1			
74HCT4316D							
74HC4316DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads;	SOT338-1			
74HCT4316DB			body width 5.3 mm				
74HC4316PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads;	SOT403-1			
74HCT4316PW			body width 4.4 mm				

5. Functional diagram


74HC4316; 74HCT4316

Quad single-pole single-throw analog switch

Pinning information 6.

6.1 Pinning

6.2 Pin description

Pin description Table 2.

Symbol	Pin	Description
1Z, 2Z, 3Z, 4Z	1, 4, 10, 13	independent input or output
1Y, 2Y, 3Y, 4Y	2, 3, 11, 12	independent input or output
Ē	7	enable input (active LOW)
GND	8	ground (0 V)
V _{EE}	9	negative supply voltage
1S, 2S, 3S, 4S	15, 5, 6, 14	select input (active HIGH)
V _{CC}	14	positive supply voltage

Functional description 7.

Table 3. Function table^[1]

Input		Switch
Ē	nS	
L	L	OFF
L	Н	ON
Н	X	OFF

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care.

74HC HCT4316 **Product data sheet**

Quad single-pole single-throw analog switch

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+11.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{SK}	switch clamping current	V_{SW} < –0.5 V or V_{SW} > V_{CC} + 0.5 V	-	±20	mA
I _{SW}	switch current	$V_{SW} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$ [1]	-	±25	mA
I _{EE}	supply current		-	20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$			
		SO16 and (T)SSOP16 packages [2]	-	500	mW
Р	power dissipation	per switch	-	100	mW

[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows in terminals nY, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{CC} current will flow out of terminals nY. In this case there is no limit for the voltage drop across the switch, but the voltages at nY and nZ may not exceed V_{CC} or V_{EE}.

[2] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C. For (T)SSOP16 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

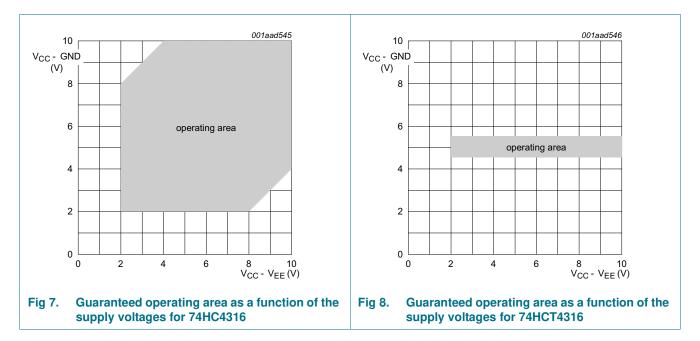

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	7	4HC431	6	7	4HCT431	6	Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage	see <u>Figure 7</u> and <u>Figure 8</u>							
		V _{CC} – GND	2.0	5.0	10.0	4.5	5.0	5.5	V
		V _{EE} – GND	2.0	5.0	10.0	2.0	5.0	10.0	V
VI	input voltage		GND	-	V _{CC}	GND	-	V _{CC}	V
V _{SW}	switch voltage		V_{EE}	-	V _{CC}	V_{EE}	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise	V _{CC} = 2.0 V	-	-	625	-	-	-	ns/V
	and fall rate	V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	-	-	-	ns/V
		V _{CC} = 10.0 V	-	-	35	-	-	-	ns/V

74HC4316; 74HCT4316

Quad single-pole single-throw analog switch

10. Static characteristics

Table 6. R_{ON} resistance per switch for types 74HC4316 and 74HCT4316

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see Figure 9.

 V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output. For 74HC4316: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V. For 74HCT4316: V_{CC} – GND = 4.5 V and 5.5 V; V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions	25	°C	–40 °C to	o +85 °C	–40 °C to	+125 °C	Unit
			Typ[1]	Max	Min	Max	Min	Max	
R _{ON(peak)}		$V_{is} = V_{CC}$ to V_{EE} [2]							
	(peak)	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 100 \mu\text{A}$	-	-	-	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 1000 \ \mu\text{A}$	160	320	-	400	-	480	Ω
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 1000 \ \mu\text{A}$	120	240	-	300	-	360	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	85	170	-	215	-	255	Ω

Quad single-pole single-throw analog switch

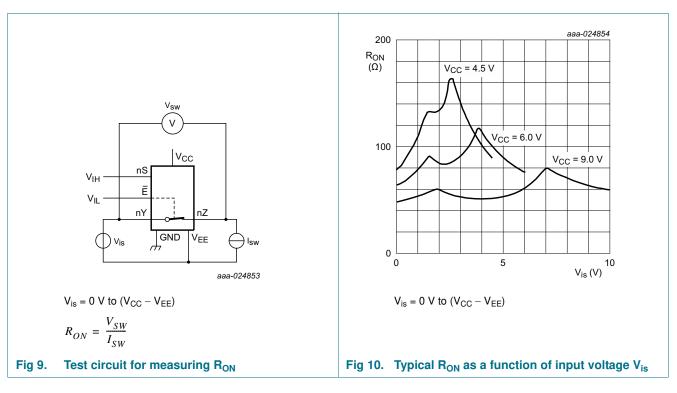
Table 6. R_{ON} resistance per switch for types 74HC4316 and 74HCT4316 ... continued

 $V_I = V_{IH}$ or V_{IL} ; for test circuit see <u>Figure 9</u>.

 V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input.

 V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

For 74HC4316: V_{CC} – GND or V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.


For 74HCT4316: V_{CC} – GND = 4.5 V and 5.5 V; V_{CC} – V_{EE} = 2.0 V, 4.5 V, 6.0 V and 9.0 V.

Symbol	Parameter	Conditions		25	°C	–40 °C to	o +85 °C	–40 °C to	+125 °C	Unit
			Ту	p <mark>[1]</mark>	Max	Min	Max	Min	Max	
R _{ON(rail)}	ON resistance	$V_{is} = V_{EE}$	[2]							
	(rail)	$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 100 \mu\text{A}$	16	60	-	-	-	-	-	Ω
	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	8	30	160	-	200	-	240	Ω	
	$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	7	'0	140	-	175	-	210	Ω	
		$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5 \ \text{V}; \ \text{V}_{EE} = -4.5 \ \text{V}; \\ I_{SW} = 1000 \ \mu\text{A} \end{array}$	6	60	120	-	150	-	180	Ω
		$V_{is} = V_{CC}$	[2]							
		$V_{CC} = 2.0 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 100 \mu\text{A}$	17	70	-	-	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	9	90	180	-	225	-	270	Ω
		$\label{eq:V_CC} \begin{array}{l} V_{CC} = 6.0 \ \text{V}; \ \text{V}_{EE} = 0 \ \text{V}; \\ I_{SW} = 1000 \ \mu\text{A} \end{array}$	8	30	160	-	200	-	240	Ω
		$\label{eq:V_CC} \begin{array}{l} V_{CC} = 4.5 \ \text{V}; \ \text{V}_{EE} = -4.5 \ \text{V}; \\ I_{SW} = 1000 \ \mu\text{A} \end{array}$	6	65	135	-	170	-	205	Ω
ΔR_{ON}	ON resistance	$V_{is} = V_{CC}$ to V_{EE}	[2]							
	mismatch between channels	$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$		-	-	-	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	1	6	-	-	-	-	-	Ω
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	ę	9	-	-	-	-	-	Ω
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	6	6	-	-	-	-	-	Ω

[1] Typical values are measured at $T_{amb} = 25 \text{ °C}$.

[2] When supply voltages (V_{CC} - V_{EE}) near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V, it is recommended to use these devices only for transmitting digital signals.

Quad single-pole single-throw analog switch

Table 7. Static characteristics 74HC4316

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
T _{amb} = 2	5 °C		I	1	1	
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	V
		V _{CC} = 9.0 V	6.3	4.3	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	V
		V _{CC} = 9.0 V	-	4.3		V
l _l	input leakage current	$V_{I} = V_{CC} \text{ or } GND$				
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	-	±0.1	μA
		V _{CC} = 10.0 V; V _{EE} = 0 V	-	-	±0.2	μA
I _{S(OFF)}	OFF-state leakage current		-	-	±0.1	μA
I _{S(ON)}	ON-state leakage current		-	-	±0.1	μA
I _{CC}	supply current					
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	8.0	μA
		V _{CC} = 10.0 V; V _{EE} = 0 V	-	-	16.0	μA

Quad single-pole single-throw analog switch

Table 7. Static characteristics 74HC4316 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
Cı	input capacitance		-	3.5	-	pF
C _{sw}	switch capacitance		-	5	-	pF
T _{amb} = ⊸	40 °C to +85 °C		·			
VIH	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
		V _{CC} = 9.0 V	-	-	2.7	V
lı	input leakage current	$V_1 = V_{CC}$ or GND				
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	-	±1.0	μA
		V _{CC} = 10.0 V; V _{EE} = 0 V	-	-	±2.0	μA
I _{S(OFF)}	OFF-state leakage current	$\label{eq:V_CC} \begin{split} V_{CC} &= 10.0 \; \text{V}; \; \text{V}_{EE} = 0 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL}; \\ \text{V}_{SW} &= \text{V}_{CC} - \text{V}_{EE}; \; \text{see} \; \underline{\text{Figure 11}} \end{split}$	-	-	±1.0	μA
I _{S(ON)}	ON-state leakage current	$\label{eq:V_CC} \begin{split} V_{CC} &= 10.0 \; \text{V}; \; \text{V}_{EE} = 0 \; \text{V}; \; \text{V}_{I} = \text{V}_{IH} \; \text{or} \; \text{V}_{IL}; \\ \text{V}_{SW} &= \text{V}_{CC} - \text{V}_{EE}; \; \text{see} \; \underline{\text{Figure 12}} \end{split}$	-	-	±1.0	μA
I _{CC}	supply current					
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	80.0	μA
		V _{CC} = 10.0 V; V _{EE} = 0 V	-	-	160.0	μA
T _{amb} = –	40 °C to +125 °C		i			
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
		V _{CC} = 9.0 V	6.3	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	- - 0.5 1.35 1.8 2.7 ±1.0 ±2.0 ±1.0 ±1.0 0 160.0 - - -	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
		V _{CC} = 9.0 V	-	-	- - - - - - - - - - - - - - - - - - -	V
l _l	input leakage current	$V_{I} = V_{CC} \text{ or } GND$				
		V _{CC} = 6.0 V; V _{EE} = 0 V	-	-	±1.0	μA
		V _{CC} = 10.0 V; V _{EE} = 0 V	-	-	±2.0	μA
I _{S(OFF)}	OFF-state leakage current		-	-	±1.0	μA
I _{S(ON)}	ON-state leakage current	$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL};$ $ V_{SW} = V_{CC} - V_{EE}; \text{ see Figure 12}$	-	-	±1.0	μA

Quad single-pole single-throw analog switch

Table 7. Static characteristics 74HC4316 ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Мах	Unit
I _{CC}						
		$V_{CC} = 6.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	160	μA
		$V_{CC} = 10.0 \text{ V}; V_{EE} = 0 \text{ V}$	-	-	320	μA

[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

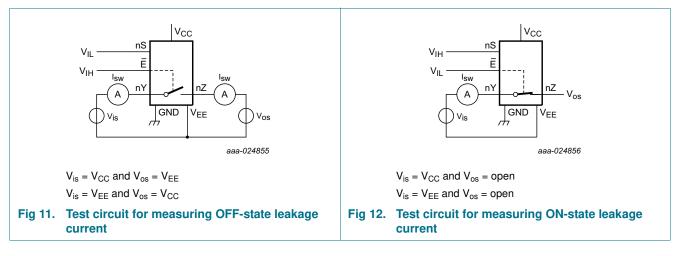
Table 8. Static characteristics 74HCT4316

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = 2	5 °C			1	1	
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
l _l	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±0.1	μA
$I_{S(OFF)}$	OFF-state leakage current		-	-	±0.1	μA
I _{S(ON)}	ON-state leakage current		-	-	±0.1	μA
I _{CC}	supply current					
		$V_{CC} = 5.5 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	-	8.0	μA
		$V_{CC} = 5.0 \text{ V}; V_{EE} = -5.0 \text{ V}$	-	-	16.0	μA
ΔI_{CC}	additional supply current	nS and \overline{E} ; per input pin; V _I = V _{CC} – 2.1 V; other inputs at V _{CC} or GND; V _{CC} = 4.5 V to 5.5 V; V _{EE} = 0 V	-	50	180	μA
CI	input capacitance		-	3.5	-	pF
C _{sw}	switch capacitance		-	5	-	pF

10 of 28

Quad single-pole single-throw analog switch


Table 8. Static characteristics 74HCT4316 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
T _{amb} = -4	40 °C to +85 °C				1	
VIH	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
VIL	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±1.0	μA
I _{S(OFF)}	OFF-state leakage current		-	-	±1.0	μA
I _{S(ON)}	ON-state leakage current		-	-	±1.0	μA
I _{CC}	supply current					
		$V_{CC} = 5.5 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	-	-	80	μA
		$V_{CC} = 5.0 \text{ V}; \text{ V}_{EE} = -5.0 \text{ V}$	-	-	160	μA
ΔI_{CC}	additional supply current	nS and \overline{E} ; per input pin; V _I = V _{CC} - 2.1 V; other inputs at V _{CC} or GND; V _{CC} = 4.5 V to 5.5 V; V _{EE} = 0 V	-	-	225	μA
T _{amb} = -4	40 °C to +125 °C	1		-!	1	_
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	0.8	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V; $V_{EE} = 0$ V	-	-	±1.0	μA
$I_{S(OFF)}$	OFF-state leakage current		-	-	±1.0	μA
I _{S(ON)}	ON-state leakage current		-	-	±1.0	μA
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}				
		V _{CC} = 5.5 V; V _{EE} = 0 V	-	-	160	μA
		$V_{CC} = 5.0 \text{ V}; \text{ V}_{EE} = -5.0 \text{ V}$	-	-	320	μA
ΔI_{CC}	additional supply current	nS and \overline{E} ; per input pin; V _I = V _{CC} - 2.1 V; other inputs at V _{CC} or GND; V _{CC} = 4.5 V to 5.5 V; V _{EE} = 0 V	-	-	245	μA

[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

Quad single-pole single-throw analog switch

11. Dynamic characteristics

Table 9. Dynamic characteristics 74HC4316

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$ unless specified otherwise; for test circuit see <u>Figure 15</u>. V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	25	°C	-40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit			
			Typ <mark>[1]</mark>	Max	Min	Max	Min	Max				
t _{pd}	propagation delay	nY to nZ or nZ to nY; $R_L = \infty \Omega$; [2] see Figure 13										
	$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	17	60	-	75	-	90	ns				
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	6	12	-	15	-	18	ns			
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	5	10	-	13	-	15	ns			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	4	8	-	10	-	12	ns			
t _{off}	turn-off time	E to nY or nZ; see Figure 14 [4]										
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	63	220	-	275	-	330	ns			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	23	44	-	55	-	66	ns			
						$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	20	-	-	-	-	-
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	18	37	-	47	-	56	ns			
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	21	39	-	49	-	59	ns			
		nS to nY or nZ; see Figure 14 [4]										
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	55	175	-	220	-	265	ns			
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	20	35	-	44	-	53	ns			
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	16	-	-	-	-	-	ns			
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	16	30	-	37	-	45	ns			
		$V_{CC} = 4.5 \text{ V}; \text{ V}_{EE} = -4.5 \text{ V}$	18	36	-	45	-	54	ns			

Quad single-pole single-throw analog switch

Table 9. Dynamic characteristics 74HC4316 ... continued

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$ unless specified otherwise; for test circuit see <u>Figure 15</u>. V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	25	°C	–40 °C t	o +85 °C	–40 °C to	o +125 ℃	Unit
			Typ[1]	Max	Min	Max	Min	Max	
t _{on}	turn-on time	E to nY or nZ; see Figure 14 3							
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	61	205	-	255	-	310	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	22	41	-	51	-	62	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	19	-	-	-	-	-	ns
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	18	35	-	43	-	53	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	19	37	-	47	-	56	ns
		nS to nY or nZ; see Figure 14 3							
		$V_{CC} = 2.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	52	175	-	220	-	265	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	19	35	-	44	-	53	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	16	-	-	-	-	-	ns
		$V_{CC} = 6.0 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	15	30	-	37	-	45	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	17	34	-	43	-	51	ns
C _{PD}	power dissipation capacitance	per switch; $V_I = GND$ to V_{CC} [5]	13	-	-	-	-	-	pF

[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[2] t_{pd} is the same as t_{PHL} and t_{PLH} .

- $[3] \quad t_{on} \text{ is the same as } t_{PHZ} \text{ and } t_{PLZ}.$
- $\label{eq:toff} [4] \quad t_{\text{off}} \text{ is the same as } t_{\text{PZH} \text{ and }} t_{\text{PZL}}.$

 Σ {(C_L + C_{sw}) × V_{CC}² × f_o} = sum of outputs;

 C_L = output load capacitance in pF;

 C_{sw} = switch capacitance in pF;

 V_{CC} = supply voltage in V.

Quad single-pole single-throw analog switch

Table 10. Dynamic characteristics 74HCT4316

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$ unless specified otherwise; for test circuit see Figure 15. V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit
			Typ <mark>[1]</mark>	Max	Min	Max	Min	Max	
t _{pd}	propagation delay	nY to nZ or nZ to nY; $R_L = \infty \Omega$; [2] see Figure 13							
	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	6	12	-	15	-	18	ns	
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	4	8	-	10	-	12	ns
t _{PZH}	OFF-state to	E to nY or nZ; see Figure 14							
	HIGH	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	22	44	-	55	-	66	ns
	propagation delay	$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	19	-	-	-	-	-	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	21	42	-	53	-	63	ns
		nS to nY or nZ; see Figure 14							
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	20	40	-	53	-	60	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	17	-	-	-	-	-	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	17	34	-	43	-	51	ns
t _{PZL}	OFF-state to	E to nY or nZ; see Figure 14							
	LOW propagation	$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	28	56	-	70	-	84	ns
	delay	$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	24	-	-	-	-	-	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	21	42	-	53	-	63	ns
		nS to nY or nZ; see Figure 14							
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	25	50	-	63	-	75	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	21	-	-	-	-	-	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	17	34	-	43	-	51	ns
t _{off}	turn-off time	E to nY or nZ; see Figure 14 [3]							
		$V_{CC} = 4.5 \text{ V}; V_{EE} = 0 \text{ V}$	25	50	-	63	-	75	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	21	-	-	-	-	-	ns
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	23	46	-	58	-	69	ns
		nS to nY or nZ; see Figure 14							
		$V_{CC} = 4.5 \text{ V}; \text{ V}_{EE} = 0 \text{ V}$	22	44	-	55	-	66	ns
		$V_{CC} = 5.0 \text{ V}; V_{EE} = 0 \text{ V};$ $C_L = 15 \text{ pF}$	19	-	-	-	-	-	ns
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	20	40	-	50	-	60	ns

14 of 28

Quad single-pole single-throw analog switch

Table 10. Dynamic characteristics 74HCT4316 ... continued

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$ unless specified otherwise; for test circuit see <u>Figure 15</u>. V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.

			-		-				
Symbol	Parameter	Conditions	25	°C	–40 °C to	o +85 °C	–40 °C to	o +125 °C	Unit
			Typ <mark>[1]</mark>	Max	Min	Max	Min	Max	
C _{PD}	power dissipation capacitance	per switch; [4] $V_I = GND$ to ($V_{CC} - 1.5 V$)	14	-	-	-	-	-	pF

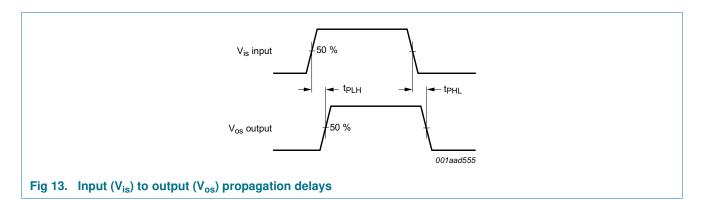
[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[2] t_{pd} is the same as t_{PHL} and t_{PLH} .

[3] t_{off} is the same as $t_{PZH and} t_{PZL}$.

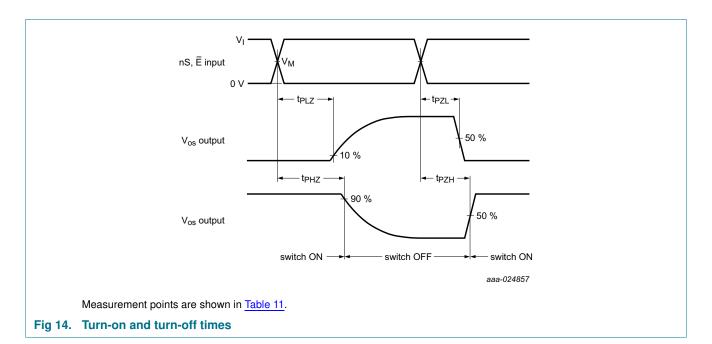
[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

$$\begin{split} P_{D} &= C_{PD} \times V_{CC}{}^{2} \times f_{i} + \sum \{(C_{L} + C_{sw}) \times V_{CC}{}^{2} \times f_{o}\} \text{ where:} \\ f_{i} &= \text{input frequency in MHz;} \\ f_{o} &= \text{output frequency in MHz;} \end{split}$$


 Σ {(C_L + C_{sw}) × V_{CC}² × f_o} = sum of outputs;

C_L = output load capacitance in pF;

 C_{sw} = switch capacitance in pF;


 V_{CC} = supply voltage in V.

12. Waveforms

74HC4316; 74HCT4316

Quad single-pole single-throw analog switch

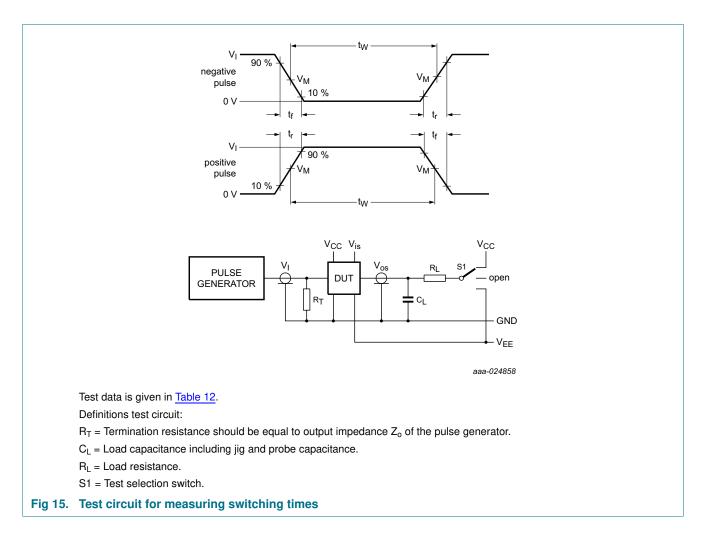


Table 11. Measurement points

Туре	VI	V _M
74HC4316	V _{CC}	0.5V _{CC}
74HCT4316	3.0 V	1.3 V

74HC4316; 74HCT4316

Quad single-pole single-throw analog switch

Table 12. Test data

Test	Input					Output	S1 position	
	E	nS	Switch nY (nZ)	t _r , t _f		Switch nZ (n)		
	VI		V _{is}	at f _{max}	other ^[1]	CL	RL	
t _{PHL,} t _{PLH}	[2]		GND to V _{CC}	< 2 ns	6 ns	50 pF	-	open
t _{PHZ} , t _{PZH}	[2]		V _{CC}	< 2 ns	6 ns	50 pF, 15 pF	1 kΩ	V _{EE}
t _{PLZ} , t _{PZL}	[2]		V _{EE}	< 2 ns	6 ns	50 pF, 15 pF	1 kΩ	V _{CC}

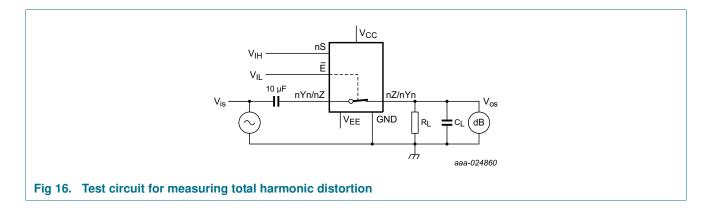
[1] $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint to t_r and t_f with 50 % duty factor.

[2] V_I values:

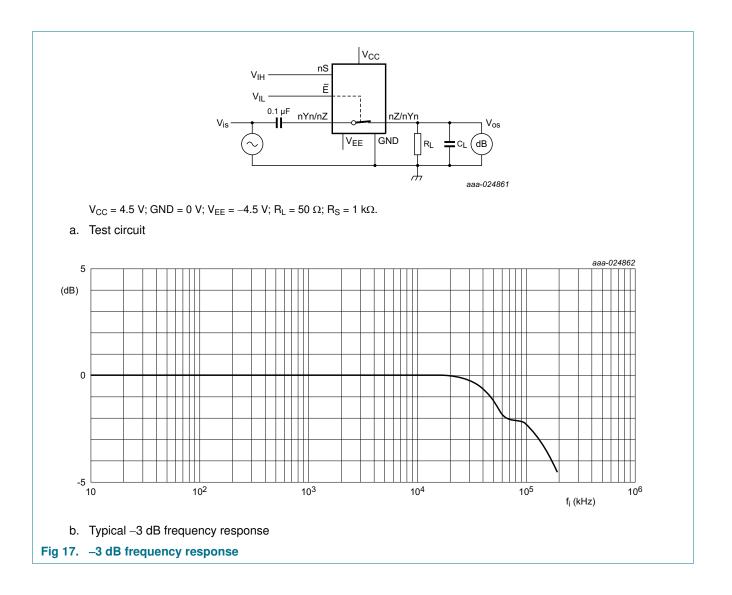
- a) For 74HC4316: $V_I = V_{CC}$
- b) For 74HCT4316: $V_I = 3 V$

Quad single-pole single-throw analog switch

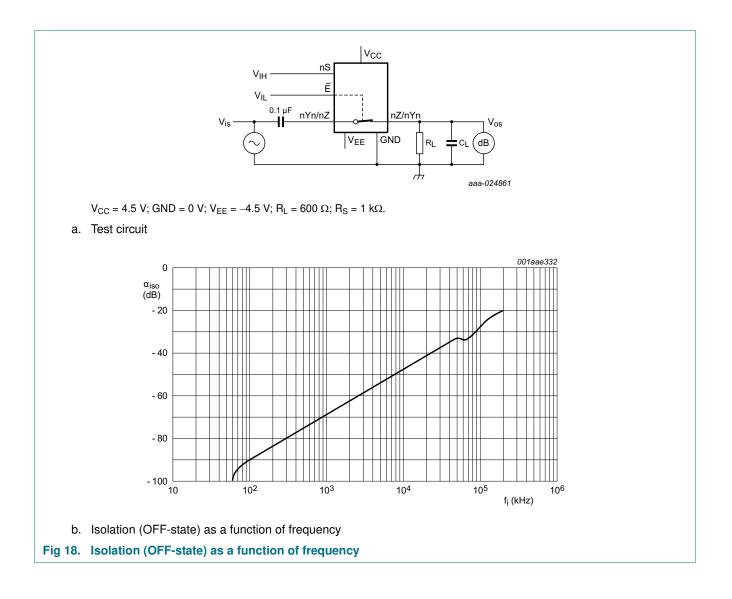
13. Additional dynamic characteristics

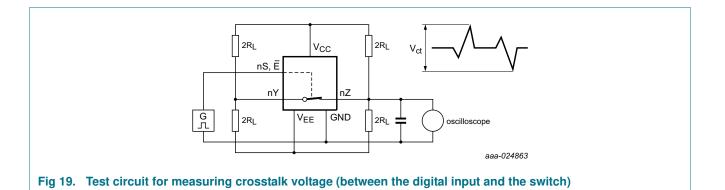

Table 13. Additional dynamic characteristics

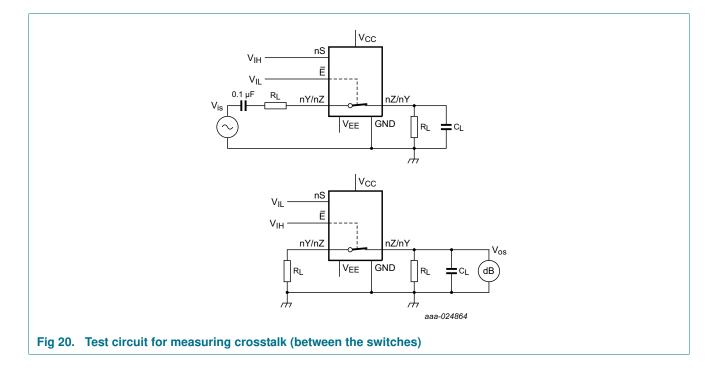
Recommended conditions and typical values; GND = 0 V; $T_{amb} = 25 \circ C$; $C_L = 50 pF$. V_{is} is the input voltage at a nY or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at a nY or nZ terminal, whichever is assigned as an output.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic	$f_i = 1 \text{ kHz}; R_L = 10 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 16}{1000 \text{ km}}$				
	distortion	$V_{is} = 4.0 \text{ V} \text{ (p-p)}; V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	0.80	-	%
		$V_{is} = 8.0 \text{ V} \text{ (p-p)}; V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	0.40	-	%
		$f_i = 10 \text{ kHz}; R_L = 10 \text{ k}\Omega; \text{see } \frac{\text{Figure } 16}{1000 \text{ km}}$				
		$V_{is} = 4.0 \text{ V} \text{ (p-p)}; V_{CC} = 2.25 \text{ V}; V_{EE} = -2.25 \text{ V}$	-	2.40	-	%
		V_{is} = 8.0 V (p-p); V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	1.20	-	%
()	-3 dB frequency	$R_L = 50 \ \Omega; \ C_L = 10 \ pF; see \frac{Figure \ 17}{11}$				
	response	V_{CC} = 2.25 V; V_{EE} = -2.25 V	-	150	-	MHz
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	160	-	MHz
$\alpha_{\sf iso}$	isolation (OFF-state)	$R_L = 600 \Omega; f_i = 1 MHz; see Figure 18$ [2]				
		V_{CC} = 2.25 V; V_{EE} = -2.25 V	-	-50	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-50	-	dB
V _{ct} crosstall	crosstalk voltage	peak-to-peak value; between control and any switch; $R_L = 600 \Omega$; $f_i = 1 MHz$; \overline{E} or nS square wave between V _{CC} and GND; $t_r = t_f = 6 ns$; see Figure 19				
		V _{CC} = 4.5 V; V _{EE} = 0 V	-	110	-	mV
		V_{CC} = 4.5 V; V_{EE} = -4.5 V	-	220	-	mV
Xtalk	crosstalk	between switches; $R_L = 600 \Omega$; $f_i = 1 MHz$; [2] see Figure 20				
		V_{CC} = 2.25 V; V_{EE} = -2.25 V	-	-60	-	dB
		$V_{CC} = 4.5 \text{ V}; V_{EE} = -4.5 \text{ V}$	-	-60	-	dB

[1] Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

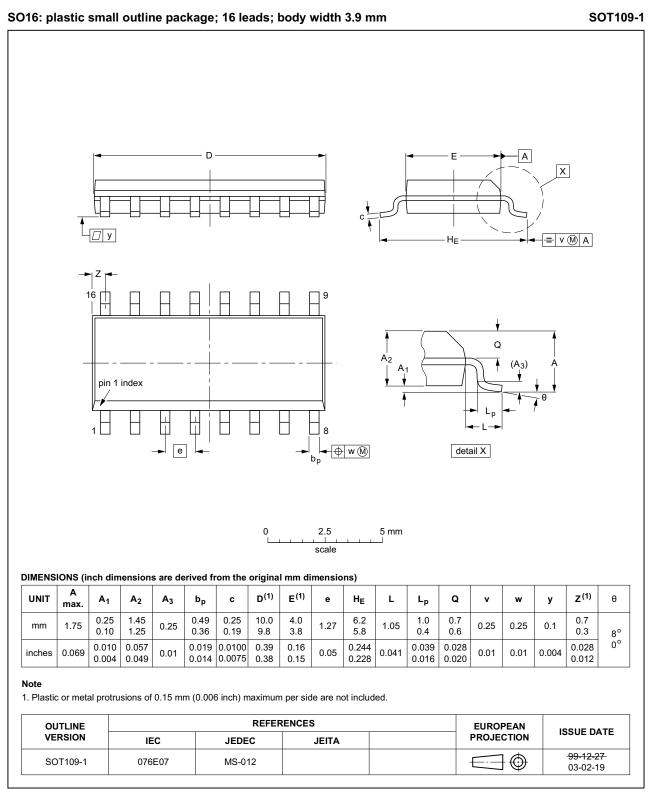

[2] Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).


74HC4316; 74HCT4316

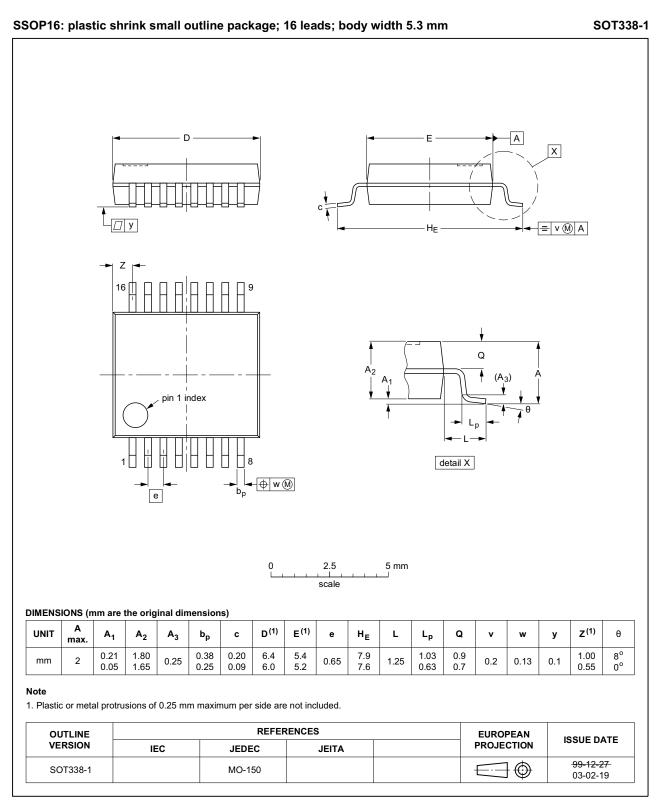


74HC4316; 74HCT4316

74HC4316; 74HCT4316



74HC4316; 74HCT4316


Quad single-pole single-throw analog switch

14. Package outline

Fig 21. Package outline SOT109-1 (SO16)

Quad single-pole single-throw analog switch

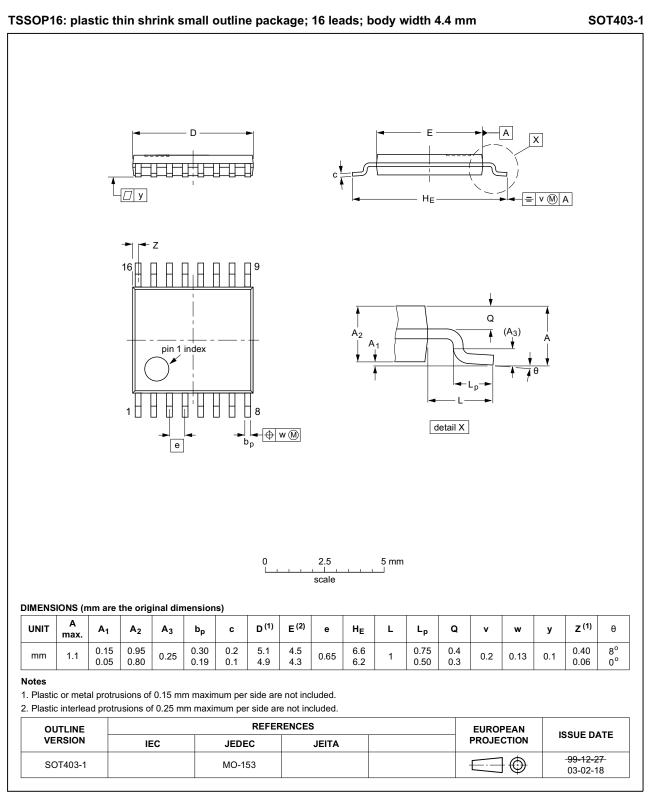


Fig 22. Package outline SOT338-1 (SSOP16)

All information provided in this document is subject to legal disclaimers.

74HC_HCT4316

Quad single-pole single-throw analog switch

Fig 23. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

74HC_HCT4316