

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4511BCD to 7-segment latch/decoder/driver

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4511

FEATURES

- · Latch storage of BCD inputs
- · Blanking input
- · Lamp test input
- Driving common cathode LED displays
- Guaranteed 10 mA drive capability per output
- Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4511 are high-speed Si-gate CMOS devices and are pin compatible with "4511" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4511 are BCD to 7-segment latch/decoder/drivers with four address inputs (D_1 to D_4), an active LOW latch enable input (\overline{LE}), an active LOW

ripple blanking input (\overline{BI}) , an active LOW lamp test input (\overline{LT}) , and seven active HIGH segment outputs $(Q_a \text{ to } Q_a)$.

When \overline{LE} is LOW, the state of the segment outputs (Q_a to Q_n) is determined by the data on D_1 to D_4 .

When $\overline{\text{LE}}$ goes HIGH, the last data present on D₁ to D₄ are stored in the latches and the segment outputs remain stable.

When \overline{LT} is LOW, all the segment outputs are HIGH independent of all other input conditions. With \overline{LT} HIGH, a LOW on \overline{BI} forces all segment outputs LOW. The inputs \overline{LT} and \overline{BI} do not affect the latch circuit.

APPLICATIONS

- Driving LED displays
- Driving incandescent displays
- · Driving fluorescent displays
- Driving LCD displays
- · Driving gas discharge displays

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STINIBUL	PANAMETER	CONDITIONS	нс	нс нст		
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	D _n to Q _n		24	24	ns	
	LE to Q _n		23	24	ns	
	BI to Q _n		19	20	ns	
	\overline{LT} to Q_n		12	13	ns	
C _I	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	64	64	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

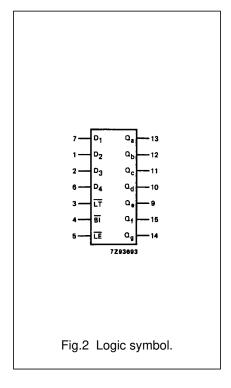
C_L = output load capacitance in pF

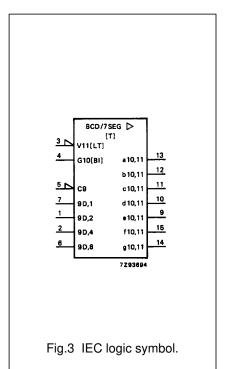
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 V$

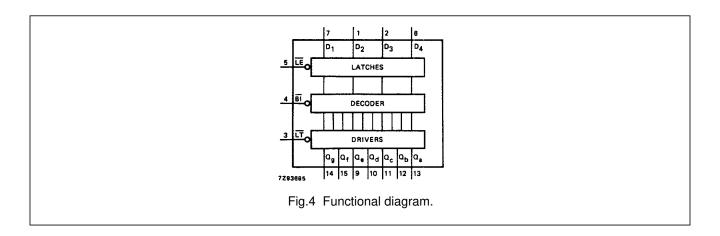
74HC/HCT4511


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
3	ĪŢ	lamp test input (active LOW)
4	BI	ripple blanking input (active LOW)
5	ĪĒ	latch enable input (active LOW)
7, 1, 2, 6	D ₁ to D ₄	BCD address inputs
8	GND	ground (0 V)
13, 12, 11, 10, 9, 15, 14	Q _a to Q _g	segments outputs
16	V _{CC}	positive supply voltage



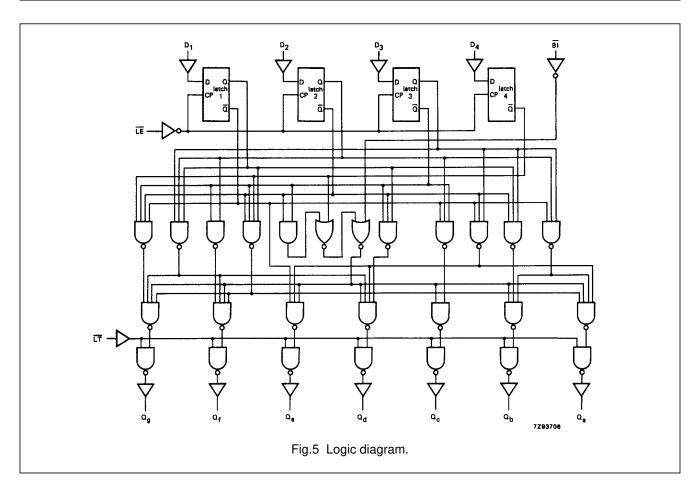
BCD to 7-segment latch/decoder/driver

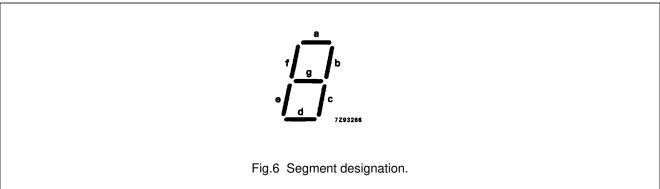
74HC/HCT4511

FUNCTION TABLE

INPUTS						DISPLAY								
ΙE	BI	ΙΤ	D ₄	D ₃	D ₂	D ₁	Qa	Q _b	Q _c	Q _d	Q _e	Qf	Qg	DISPLAT
Х	Х	L	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	8
Х	L	Н	Х	Х	X	X	L	L	L	L	L	L	L	blank
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	Н	Н	L	L	Н	L	Н	Н	L	H	Н	L	H	2
L	Н	Н	L	L	Н	Н	Н	Н	Н	H	L	L	Н	3
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
L	Н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9
L	Н	Н	Н	L	Н	L	L	L	L	L	L	L	L	blank
L	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	L	Н	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	blank
Н	Н	Н	Х	Х	Х	Х				(1)				(1)

Note


1. Depends upon the BCD-code applied during the LOW-to-HIGH transition of $\overline{\text{LE}}$.


H = HIGH voltage level

L = LOW voltage level

X = don't care

74HC/HCT4511

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard, excepting V_{OH} which is given below

I_{CC} category: MSI

Non-standard DC characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

				7	「 _{amb} (°		TEST CONDITIONS					
SYMBOL	PARAMETER 74HC						UNIT	.,	.,			
			+25		−40 t	o +85	5 -40 to +125			V _{CC} (V)	VI	
		min.	typ.	max.	min.	max.	min.	max.		` ′		
V _{OH}	HIGH level output voltage	3.98 3.60			3.84 3.35		3.70 3.10		V	4.5	V _{IH} or V _{IL}	7.5 10.0
V _{OH}	HIGH level output voltage	5.60 5.48 4.80			5.45 5.34 4.50		5.35 5.20 4.20		V	6.0	V _{IH} or V _{IL}	7.5 10.0 15.0

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF$

					T _{amb} (°C)				TEST CONDITIONS		
OVALDOL					74H]		WAVEFORMS				
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay D _n to Q _n		77 28 22	300 60 51		375 75 64		450 90 77	ns	2.0 4.5 6.0	Fig.8	
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		74 27 22	270 54 46		330 68 58		405 81 69	ns	2.0 4.5 6.0	Fig.9	
t _{PHL} / t _{PLH}	propagation delay BI to Q _n		61 22 18	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	Fig.10	
t _{PHL} / t _{PLH}	propagation delay LT to Q _n		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 8, 9 and 10	
t _W	latch enable pulse width LOW	80 16 14	11 4 3		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.9	
t _{su}	set-up time D _n to LE	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.11	
t _h	hold time D _n to LE	0 0 0	-11 -4 -3		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.11	

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard, excepting V_{OH} which is given below

I_{CC} category: MSI

Non-standard DC characteristics for 74HCT

Voltages are referenced to GND (ground = 0 V)

				7	amb (°	C)				TEST CONDITIONS		
SYMBOL	PARAMETER	74HCT								.,	.,	
		+25				o +85	−40 to	+125		V _{CC} (V)	V _I	–l _O (mA)
		min.	typ.	max.	min.	max.	min.	max.		, ,		, ,
V _{OH}	HIGH level output voltage	3.98			3.84		3.70		٧	4.5	V _{IH} or	7.5
		3.60			3.35		3.10				V_{IL}	10.0

Note to HCT types

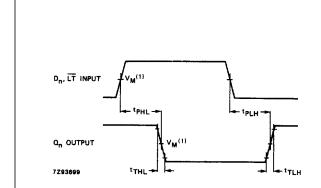
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.

To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
ĪŦ, ĪĒ	1.50
BI, D _n	0.30

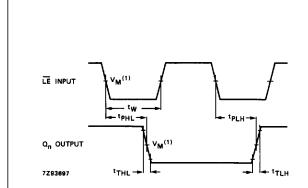
BCD to 7-segment latch/decoder/driver

74HC/HCT4511

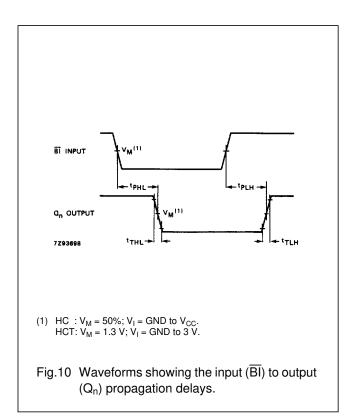

AC CHARACTERISTICS FOR 74HCT

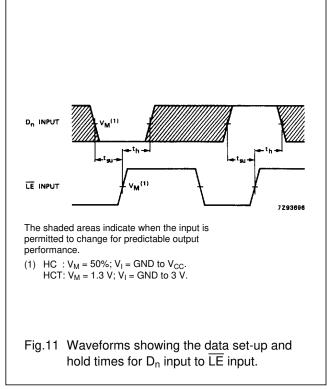
 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF$

	PARAMETER				T _{amb} (°	°C)				TEST CONDITIONS		
SYMBOL					74HC	UNIT		WAVEFORMS				
STWIBOL	PANAMETER	+25			−40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(-,		
t _{PHL} / t _{PLH}	propagation delay D_n to Q_n		28	60		75		90	ns	4.5	Fig.8	
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		27	54		68		81	ns	4.5	Fig.9	
t _{PHL} / t _{PLH}	propagation delay BI to Q _n		23	44		55		66	ns	4.5	Fig.10	
t _{PHL} / t _{PLH}	propagation delay LT to Q _n		16	30		38		45	ns	4.5	Fig.8	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 8, 9 and 10	
t _W	latch enable pulse width LOW	16	5		20		24		ns	4.5	Fig.9	
t _{su}	set-up time D _n to LE	12	5		15		18		ns	4.5	Fig.11	
t _h	hold time D _n to LE	0	<u>-4</u>		0		0		ns	4.5	Fig.11	


74HC/HCT4511

AC WAVEFORMS


(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.


Fig.8 Waveforms showing the input (D_n, \overline{LT}) to output (Q_n) propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.9 Waveforms showing the input (\overline{LE}) to output (Q_n) propagation delays and the latch enable pulse width.

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

APPLICATION DIAGRAMS

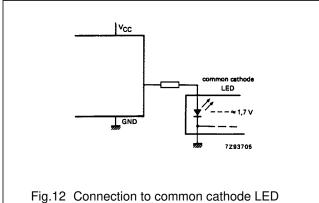


Fig.12 Connection to common cathode LED display readout.

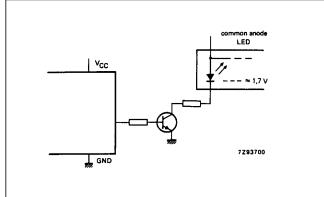


Fig.13 Connection to common anode LED display readout.

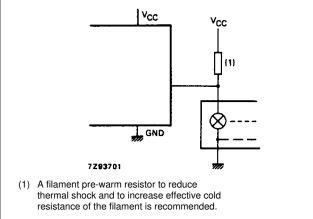
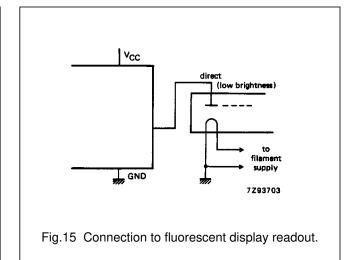



Fig.14 Connection to incandescent display readout.

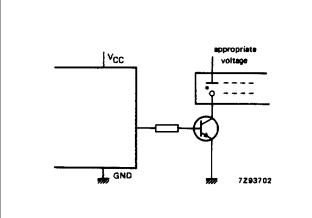


Fig.16 Connection to gas discharge display readout.

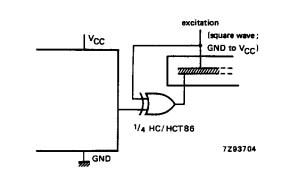


Fig.17 Connection to LCD display readout. (Direct DC drive is not recommended as it can shorten the life of LCD displays).

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".