mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT563

FEATURES

- 3-state inverting outputs for bus oriented applications
- Inputs and outputs on opposite sides of package allowing easy interface with microprocessor
- Common 3-state output enable input
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT563 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT563 are octal D-type transparent latches featuring separate D-type inputs for each latch and inverting 3-state outputs for bus oriented applications.

A latch enable (LE) input and an output enable (OE) input are common to all latches.

The "563" is functionally identical to the "573", but has inverted outputs.

The "563" consists of eight D-type transparent latches with 3-state inverting outputs. The LE and $\overline{\text{OE}}$ are

common to all latches. When LE is HIGH, data at the D_n inputs enter the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding D-input changes.

When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When \overline{OE} is LOW, the contents of the 8 latches are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latches.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SVMBOL		CONDITIONS	TYP			
STWDOL		CONDITIONS	HC	нст		
t _{PHL/} t _{PLH}	propagation delay D_n , LE to \overline{Q}_n	C _L = 15 pF; V _{CC} = 5 V	14	16	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	19	19	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}{}^{2} \times f_{i} + \Sigma \; (C_{L} \times V_{CC}{}^{2} \times f_{o})$ where:

f_i = input frequency in MHz

 $f_o = output$ frequency in MHz

 $\Sigma~(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs

 C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} for HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 3, 4, 5, 6, 7, 8, 9	D ₀ to D ₇	data inputs
11	LE	latch enable input (active HIGH)
1	ŌĒ	3-state output enable input (active LOW)
10	GND	ground (0 V)
19, 18, 17, 16, 15, 14, 13, 12	\overline{Q}_0 to \overline{Q}_7	3-state latch outputs
20	V _{CC}	positive supply voltage

74HC/HCT563

74HC/HCT563

FUNCTION TABLE

OPERATING	IN	IPUT	S	INTER- NAL	OUT- PUTS		
MODES	OE	LE	Dn	LATCHES	$\overline{\mathbf{Q}}_0$ to $\overline{\mathbf{Q}}_7$		
enable and register	L	H H	L H	L H	H L		
latch and read register	L	L	l h	L H	H L		
latch register and disable outputs	H H	L	l h	L H	Z Z		

Notes

1. H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition

Z = high impedance OFF-state

74HC/HCT563

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \; V; \, t_r = t_f = 6 \; ns; \, C_L = 50 \; pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									
		+25			-40 to +85		-40 to +125				WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay D_n to \overline{Q}_n		47 17 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to \overline{Q}_n		47 17 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.7
t _{PZH} / t _{PZL}	$\begin{array}{l} \text{3-state output enable} \\ \text{time} \\ \overline{\text{OE}} \text{ to } \overline{\text{Q}}_n \end{array}$		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{PHZ} / t _{PLZ}	$\begin{array}{l} \text{3-state output disable} \\ \text{time} \\ \overline{\text{OE}} \text{ to } \overline{\text{Q}}_{n} \end{array}$		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6
tw	enable pulse width HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time D _n to LE	50 10 9	11 4 3		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.9
t _h	hold time D _n to LE	4 4 4	6 2 2		4 4 4		4 4 4		ns	2.0 4.5 6.0	Fig.9

74HC/HCT563

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D _n	0.35
LE	0.65
OE	1.25

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay D_n to \overline{Q}_n		18	30		38		45	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to \overline{Q}_n		19	35		44		53	ns	4.5	Fig.7
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} to \overline{Q}_n		20	35		44		53	ns	4.5	Fig.8
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to \overline{Q}_n		22	35		44		53	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6
t _W	enable pulse width HIGH	16	5		20		24		ns	4.5	Fig.7
t _{su}	set-up time D _n to LE	10	3		13		15		ns	4.5	Fig.9
t _h	hold time D _n to LE	5	-1		5		5		ns	4.5	Fig.9

Product specification

74HC/HCT563

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".