

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74HC594-Q100; 74HCT594-Q100

8-bit shift register with output register

Rev. 2 — 13 June 2016

Product data sheet

1. General description

The 74HC594-Q100; 74HCT594-Q100 is a high-speed Si-gate CMOS device and is pin compatible with Low-Power Schottky TTL (LSTTL).

The 74HC594-Q100; 74HCT594-Q100 is an 8-bit, non-inverting, serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks (SHCP and STCP) and direct overriding clears (SHR and STR) are provided on both the shift and storage registers. A serial output (Q7S) is provided for cascading purposes.

Both the shift and storage register clocks are positive-edge triggered. If both clocks are connected together, the shift register is always one count pulse ahead of the storage register.

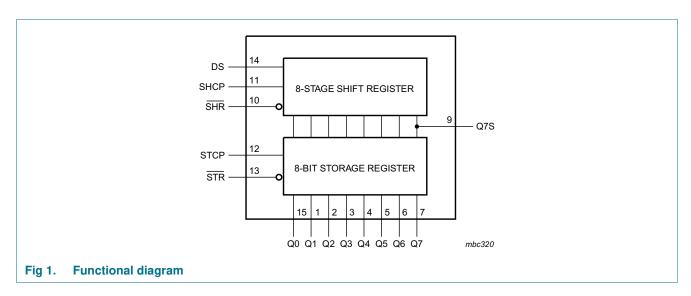
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

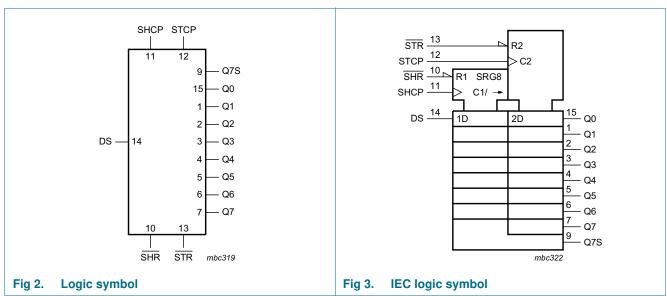
2. Features and benefits

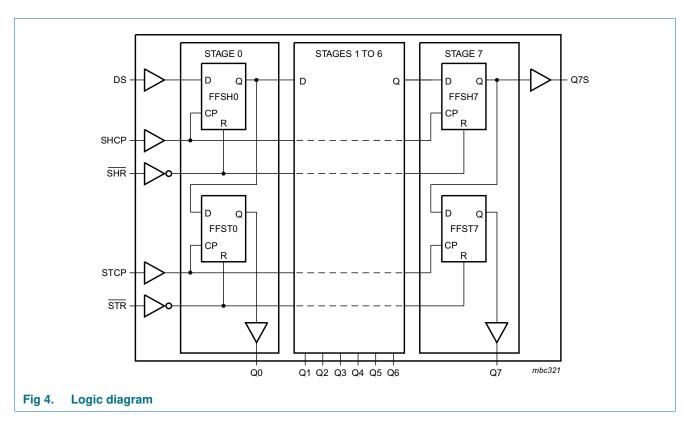
- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Synchronous serial input and output
- Complies with JEDEC standard No.7A
- 8-bit parallel output
- Shift and storage registers have independent direct clear and clocks
- Independent clocks for shift and storage registers
- 100 MHz (typical)
- ESD protection:
 - ◆ MIL-STD-883, method 3015 exceeds 2000 V
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - ♦ MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

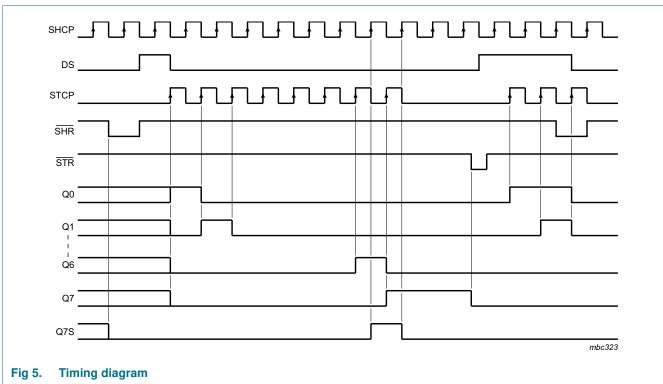
3. Applications

- Serial-to parallel data conversion
- Remote control holding register

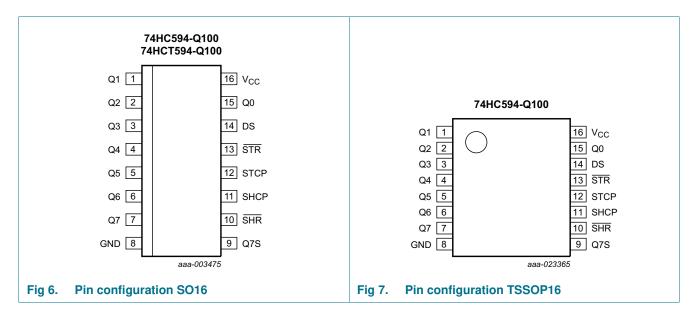



4. Ordering information


Table 1. Ordering information


Type number	Package	Package						
	Temperature range	Name	Description	Version				
74HC594D-Q100	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1				
74HCT594D-Q100			body width 3.9 mm					
74HC594PW-Q100	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				

5. Functional diagram



6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	15, 1, 2, 3, 4, 5, 6, 7	parallel data output
GND	8	ground (0 V)
Q7S	9	serial data output
SHR	10	shift register reset (active LOW)
SHCP	11	shift register clock input
STCP	12	storage register clock input
STR	13	storage register reset (active LOW)
DS	14	serial data input
V _{CC}	16	supply voltage

7. Functional description

Table 3. Function table[1]

Function	Input	X			
	SHR	STR	SHCP	STCP	DS
Clear shift register	L	Х	Х	Χ	Х
Clear storage register	Χ	L	Х	Χ	Х
Load DS into shift register stage 0, advance previous stage data to the next stage	Н	Х	\uparrow	Χ	H or L
Transfer shift register data to storage register and outputs Qn	Χ	Н	Х	↑	Х
Shift register one count pulse ahead of storage register	Н	Н	↑	↑	Х

^[1] H = HIGH voltage level; L = LOW voltage level; $L = LOW \text$

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	[1]	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	[1]	-	±20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$				
		Serial data output Q7S		-	±25	mA
		Parallel data output		-	±35	mA
I _{CC}	supply current	Serial data output Q7S		-	50	mA
		Parallel data output		-	70	mA
I _{GND}	ground current	Serial data output Q7S		-	-50	mA
		Parallel data output		-	-70	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For SO16 package: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For TSSOP16 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Type 74HC	594-Q100					
V _{CC}	supply voltage		2.0	5.0	6.0	V
V _I	input voltage		0	-	V _{CC}	٧
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r	rise time	V _{CC} = 2.0 V	-	-	1000	ns
		$V_{CC} = 4.5 \text{ V}$	-	6.0	500	ns
		$V_{CC} = 6.0 \text{ V}$	-	-	400	ns
t _f	fall time	V _{CC} = 2.0 V	-	-	1000	ns
		$V_{CC} = 4.5 \text{ V}$	-	6.0	500	ns
		$V_{CC} = 6.0 \text{ V}$	-	-	400	ns
Type 74HC	CT594-Q100					
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	٧
Vo	output voltage		0	-	V _{CC}	٧
T _{amb}	ambient temperature		-40	+25	+125	°C
t _r	rise time	V _{CC} = 4.5 V	-	6.0	500	ns
t _f	fall time	V _{CC} = 4.5 V	-	6.0	500	ns

10. Static characteristics

Table 6. Static characteristics type 74HC594-Q100

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
T _{amb} = 25	°C									
V_{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V				
	HIGH-level input voltage LOW-level input voltage	V _{CC} = 4.5 V	3.15	2.4	-	V				
		V _{CC} = 6.0 V	4.2	3.2	-	V				
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V				
		V _{CC} = 4.5 V	-	2.1	1.35	V				
		V _{CC} = 6.0 V	-	2.8	1.8	V				
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}								
		Serial data output Q7S								
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V				
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V				
		Parallel data outputs			- 0.5 1.35 1.8					
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V				
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V				

Table 6. Static characteristics type 74HC594-Q100 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}								
		Serial data output Q7S	,	1						
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V				
		I _O = 5.2 mA; V _{CC} = 6.0 V	-	0.16	0.26	V				
		Parallel data outputs	,	1						
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V				
		$I_O = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V				
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	μА				
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	μΑ				
Ci	input capacitance		-	3.5	-	pF				
$T_{amb} = -40$	0 °C to +85 °C									
V_{IH}	HIGH-level input voltage		V							
		V _{CC} = 4.5 V	3.15	-	-	V				
		V _{CC} = 6.0 V	4.2	-	-	V				
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V				
		V _{CC} = 4.5 V	-	-	1.35	V				
		$V_{CC} = 6.0 \text{ V}$	-	-	1.8	V				
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}								
V _{OH}		Serial data output Q7S								
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V				
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V				
		Parallel data outputs	·		 	·				
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V				
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V				
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}			0.26 0.26 0.26 ±0.1 8.0 0.5 1.35 1.8 0.33 0.33					
		Serial data output Q7S	·			·				
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V				
		$I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V				
		Parallel data outputs	·			·				
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V				
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V				
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ				
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 6.0$ V	-	-	80	μА				

Table 6. Static characteristics type 74HC594-Q100 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
T _{amb} = -4	0 °C to +125 °C			-	1				
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V			
		V _{CC} = 4.5 V	3.15	-	-	V			
		$V_{CC} = 6.0 \text{ V}$	4.2	-	-	V			
V_{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V			
		V _{CC} = 4.5 V	-	-	1.35	V			
		$V_{CC} = 6.0 \text{ V}$	-	-	- - - 0.5	V			
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}							
		Serial data output Q7S	,	1					
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V			
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V			
		Parallel data outputs							
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V			
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V			
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}							
		Serial data output Q7S	,						
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V			
		$I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V			
		Parallel data outputs	,						
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V			
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V			
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ			
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 6.0$ V	-	-	160	μΑ			

Table 7. Static characteristics type 74HCT594-Q100

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		Serial data output Q7S		1	1	
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	٧
		Parallel data outputs		1	1	
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	٧
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		Serial data output Q7S		1	1	
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	0.15	0.26	٧
		Parallel data outputs	1	2.0	1	
		I _O = 6.0 mA; V _{CC} = 4.5 V	-	0.16	0.26	٧
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	μА
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$ and other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V				
		pins SHR, SHCP, STCP, STR	-	150	540	μΑ
		pin DS	-	25	90	μΑ
Ci	input capacitance		-	3.5	-	pF
$T_{amb} = -40$	0 °C to +85 °C		·			
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	٧
V _{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	8.0	٧
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		Serial data output Q7S				
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	٧
		Parallel data outputs				
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	٧
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		Serial data output	'			'
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	-	0.33	V
		Parallel data outputs	1			1
		I _O = 6.0 mA; V _{CC} = 4.5 V	-	-	0.33	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μА
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	80	μА

Table 7. Static characteristics type 74HCT594-Q100 ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$ and other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V								
		pins SHR, SHCP, STCP, STR	-	-	675	μΑ				
		pin DS	-	-	-	μΑ				
$T_{amb} = -40$	0 °C to +125 °C		,							
V _{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V				
V_{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	8.0	٧				
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}								
		Serial data output Q7S								
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V				
		Parallel data outputs		1						
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	٧				
V _{OL}	LOW-level output voltage $V_I = V_{IH}$ or V_{IL}									
/ _{OL}		Serial data output Q7S								
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	-	0.4	V				
		Parallel data outputs								
		I _O = 6.0 mA; V _{CC} = 4.5 V	-	-	0.4	V				
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μА				
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	160	μА				
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$ and other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V								
		pins SHR, SHCP, STCP, STR	-	-	735	μА				
		pin DS	-	-	122.5	μΑ				

11. Dynamic characteristics

Dynamic characteristics type 74HC594-Q100

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF; see <u>Figure 14</u>.$

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _{pd}	propagation d elay	SHCP to Q7S; [1] see Figure 8								
	-	V _{CC} = 2.0 V	-	44	150	-	185	-	225	ns
		V _{CC} = 4.5 V	-	16	30	-	37	-	45	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	13	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	31	-	38	ns
		STCP to Qn; see Figure 9								
		V _{CC} = 2.0 V	-	44	150	-	185	-	225	ns
		V _{CC} = 4.5 V	-	16	30	-	37	-	45	ns
		$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	13	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	31	-	38	ns
t _{PHL} HIGH to LOW propagation	SHR to Q7S; see Figure 12									
	delay	V _{CC} = 2.0 V	-	39	150	-	185	-	225	ns
		V _{CC} = 4.5 V	-	14	30	-	37	-	45	ns
		$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	11	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	12	26	-	31	-	38	ns
		STR to Qn; see Figure 13								
		$V_{CC} = 2.0 \text{ V}$	-	39	125	-	155	-	185	ns
		$V_{CC} = 4.5 \text{ V}$	-	14	25	-	31	-	37	ns
		$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	11	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	12	21	-	26	-	31	ns
t _{THL}	HIGH to LOW	see Figure 8								
	output transition	Serial data output Q7S								
	time	$V_{CC} = 2.0 \text{ V}$	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
		Parallel data outputs								
		V _{CC} = 2.0 V	-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V	-	5	12	-	15	-	18	ns
		$V_{CC} = 6.0 \text{ V}$	-	4	10	-	13	-	15	ns

Table 8. Dynamic characteristics type 74HC594-Q100 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF; see Figure 14.$

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
TLH	LOW to HIGH	see Figure 8								
	output transition	Serial data output Q7S						1		
	time	V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
		Parallel data outputs			1		-			
		V _{CC} = 2.0 V	-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V	-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V	-	4	10	-	13	-	15	ns
t _W pı	pulse width	SHCP (HIGH or LOW); see Figure 8								
		V _{CC} = 2.0 V	80	10	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	3	-	17	-	20	-	ns
		STCP (HIGH or LOW); see <u>Figure 9</u>								
		V _{CC} = 2.0 V	80	10	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	3	-	17	-	20	-	ns
		SHR and STR (HIGH or LOW); see Figure 12 and Figure 13								
		V _{CC} = 2.0 V	80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	5	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	4	-	17	-	20	-	ns
su	set-up time	DS to SHCP; see Figure 10								
		V _{CC} = 2.0 V	100	10	-	125	-	150	-	ns
		V _{CC} = 4.5 V	20	4	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	3	-	21	-	26	-	ns
		SHR to STCP; see Figure 11								
		V _{CC} = 2.0 V	100	14	-	125	-	150	-	ns
		V _{CC} = 4.5 V	20	5	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	4	-	21	-	26	-	ns
		SHCP to STCP; see Figure 9								
		V _{CC} = 2.0 V	100	17	-	125	-	150	-	ns
		V _{CC} = 4.5 V	20	6	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	5	-	21	-	26	-	ns

 Table 8.
 Dynamic characteristics type 74HC594-Q100 ...continued

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF; see <u>Figure 14</u>.$

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
t _h	hold time	DS to SHCP; see Figure 10								
		V _{CC} = 2.0 V	25	-8	-	30	-	35	-	ns
		V _{CC} = 4.5 V	5	-3	-	6	-	7	-	ns
		V _{CC} = 6.0 V	4	-2	-	5	-	6	-	ns
t _{rec} recovery time	SHR to SHCP and STR to STCP; see Figure 12 and Figure 13									
		V _{CC} = 2.0 V	50	-14	-	65	-	75	-	ns
		V _{CC} = 4.5 V	10	-5	-	13	-	15	-	ns
		V _{CC} = 6.0 V	9	-4	-	11	-	13	-	ns
f _{max}	maximum frequency	SHCP or STCP; see Figure 8 and Figure 9								
		V _{CC} = 2.0 V	6.0	30	-	4.8	-	4.0	-	MHz
		V _{CC} = 4.5 V	30	92	-	24	-	20	-	MHz
		$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	100	-	-	-	-	-	MHz
	V _{CC} = 6.0 V	35	109	-	28	-	24	-	MHz	
C_{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC};$ $V_{CC} = 5 \text{ V}; f_i = 1 \text{ MHz}$	-	84	-	-	-	-	-	pF

^[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \sum (C_L \times V_{CC}{}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

Table 9. Dynamic characteristics type 74HCT594-Q100

 $GND = 0 \ V; \ V_{CC} = 4.5 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF; \ see Figure 14.$

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C t	o +125 °C	Unit		
			Min	Тур	Max	Min	Max	Min	Max			
t _{pd}	propagation delay	SHCP to Q7S; [1] see Figure 8	-	18	32	-	40	-	48	ns		
		$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	15	-	-	-	-	-	ns		
		STCP to Qn; see Figure 9	-	18	32	-	40	-	48	ns		
		$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	15	-	-	-	-	-	ns		
t _{PHL}	HIGH to LOW propagation	SHR to Q7S; see Figure 12	-	17	30	-	38	-	45	ns		
	delay	$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	14	-	-	-	-	-	ns		
	STR to Qn; see Figure 13	-	17	30	-	38	-	45	ns			
	$V_{CC} = 5.0 \text{ V};$ $C_L = 15 \text{ pF}$	-	14	-	-	-	-	-	ns			
t _{THL}	HIGH to LOW	see Figure 8										
	output transition time	Serial data output Q7S										
		$V_{CC} = 4.5 \text{ V}$	-	7	15	-	19	-	22	ns		
		Parallel data outputs										
		$V_{CC} = 4.5 \text{ V}$	-	5	12	-	15	-	18	ns		
t _{TLH}	LOW to HIGH	see Figure 8										
	output transition time	Serial data output Q7S										
	transition time	$V_{CC} = 4.5 \text{ V}$	-	7	15	-	19	-	22	ns		
		Parallel data outputs										
		$V_{CC} = 4.5 \text{ V}$	-	5	12	-	15	-	18	ns		
t _W	pulse width	SHCP (HIGH or LOW); see Figure 8	16	4	-	20	-	24	-	ns		
		STCP (HIGH or LOW); see <u>Figure 9</u>	16	4	-	20	-	24	-	ns		
	SHR and STR (HIGH or LOW); see Figure 12 and Figure 13	16	6	-	20	-	24	-	ns			
t _{su}	t _{su} set-up time	DS to SHCP; see <u>Figure 10</u>	20	4	-	25	-	30	-	ns		
		SHR to STCP; see Figure 11	20	6	-	25	-	30	-	ns		
		SHCP to STCP; see Figure 9	20	7	-	25	-	30	-	ns		
t _h	hold time	DS to SHCP; see Figure 10	5	-3	-	6	-	7	-	ns		

Table 9. Dynamic characteristics type 74HCT594-Q100 ...continued GND = 0 V; $V_{CC} = 4.5$ V; $t_r = t_f = 6$ ns; $C_L = 50$ pF; see Figure 14.

Symbol	Parameter	Conditions	25 °C			-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _{rec}	recovery time	SHR to SHCP and STR to STCP; see Figure 12 and Figure 13	10	-5	-	13	-	15	-	ns
f _{max}	maximum frequency	SHCP or STCP; see Figure 8 and Figure 9	30	92	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF	-	100	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC} - $ [2] 1.5 V; $V_{CC} = 5 \text{ V}$; $f_{i} = 1 \text{ MHz}$	-	89	-	-	-	-	-	pF

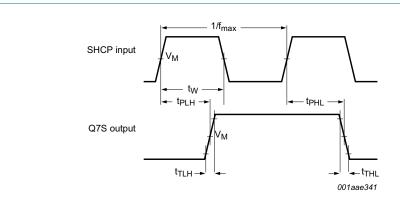
[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \sum (C_L \times V_{CC}{}^2 \times f_o)$ where:

f_i = input frequency in MHz;

fo = output frequency in MHz;

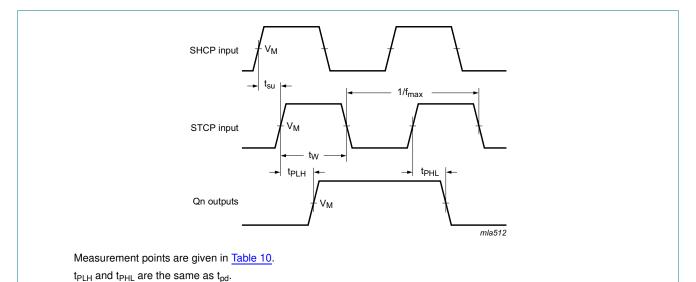

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = sum of outputs.$

12. Waveforms



Measurement points are given in <u>Table 10</u>.

 t_{PLH} and t_{PHL} are the same as t_{pd} .

 t_{TLH} = LOW to HIGH output transition time; t_{THL} = HIGH to LOW output transition time.

Fig 8. The shift clock (SHCP) to output (Q7S) propagation delays, the shift clock pulse width, the maximum shift clock frequency, and output transition times

The storage clock (STCP) to output (Qn), propagation delays, the storage clock pulse width, the Fig 9. maximum storage clock pulse frequency and the shift clock to storage clock set-up time

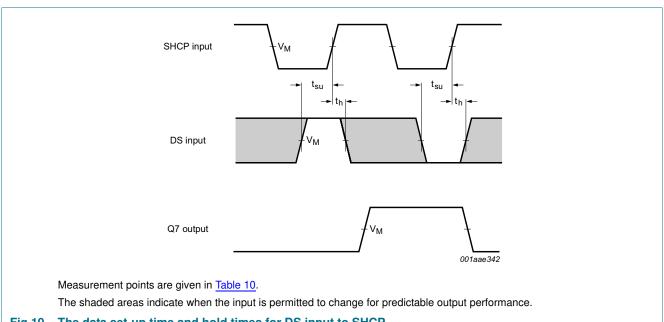
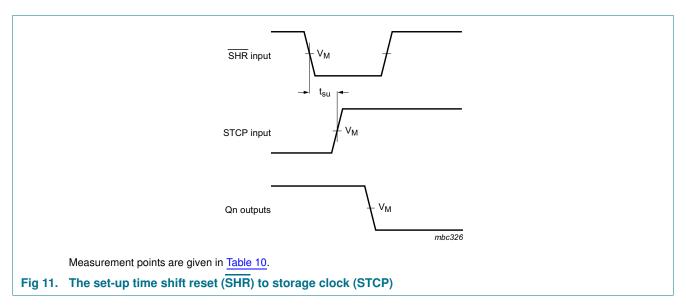
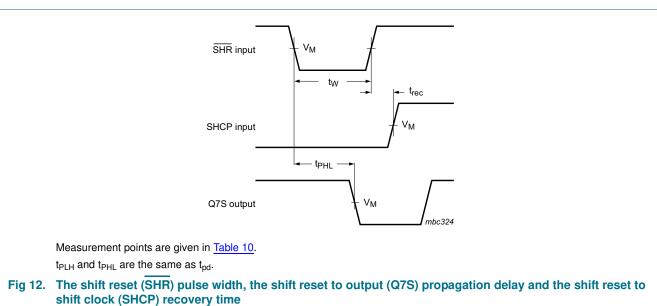
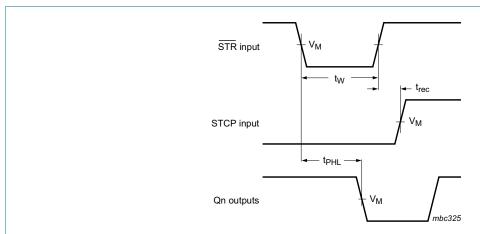
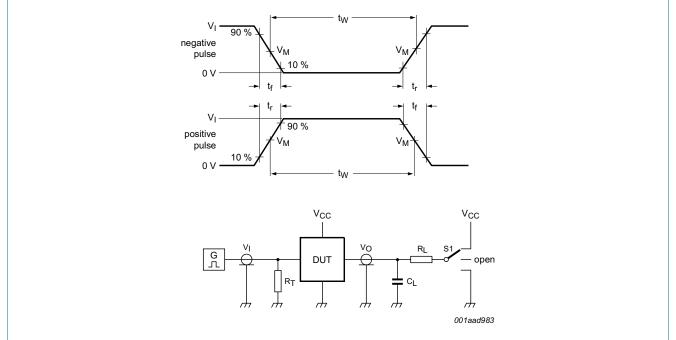





Fig 10. The data set-up time and hold times for DS input to SHCP

17 of 25


Measurement points are given in Table 10.

 t_{PLH} and t_{PHL} are the same as t_{pd} .

Fig 13. The storage reset (STR) pulse width, the storage reset to output (Qn) propagation delay and the storage reset to storage clock (STCP) recovery time

Table 10. Measurement points

Туре	Input	Output		
	V _M	V _M		
74HC594-Q100	0.5 × V _{CC}	$0.5 \times V_{CC}$		
74HCT594-Q100	1.3 V	1.3 V		

Test data is given in Table 11.

Definitions test circuit:

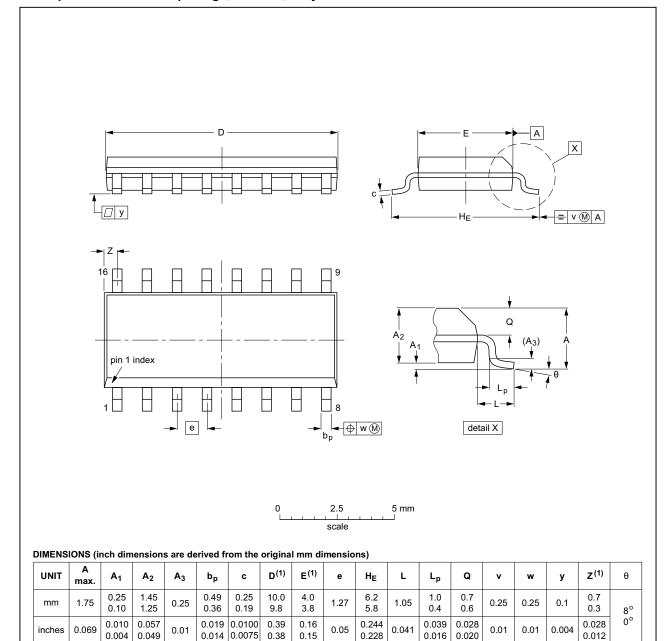
 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator

C_L = Load capacitance including jig and probe capacitance

R_L = Load resistor

S1 = Test selection switch

Fig 14. Test circuit for measuring switching times


Table 11. Test data

Туре	Input		Load		S1 position			
	VI	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74HC594-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	
74HCT594-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}	

13. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

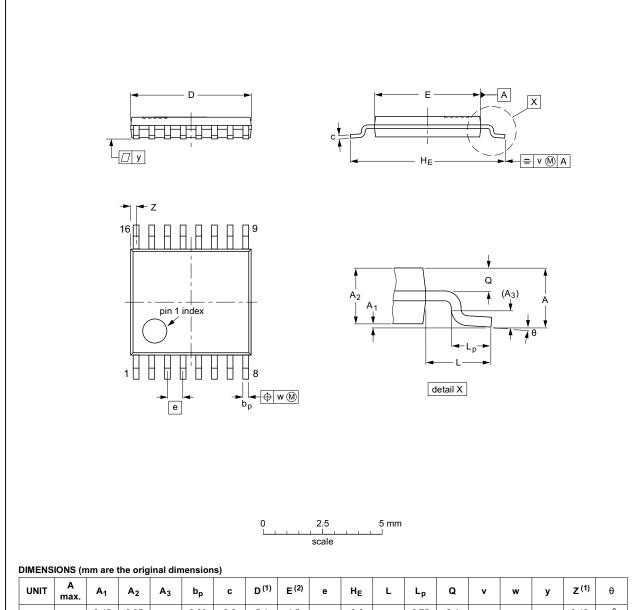
SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 15. Package outline SOT109-1 (SO16)


74HC_HCT594_Q100

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	Q	>	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT403-1		MO-153				99-12-27 03-02-18	

Fig 16. Package outline SOT403-1 (TSSOP16)

74HC_HCT594_Q100

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
LSTTL	Low-Power Schottky Transistor-Transistor Logic
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
74HC_HCT594_Q100 v.2	20160613	Product data sheet	-	74HC_HCT594_Q100 v.1			
Modifications:	Added type number 74HC594PW-Q100 (SOT403-1).						
74HC_HCT594_Q100 v.1	20120802	Product data sheet	-	-			

22 of 25

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions"
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 **Definitions**

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 **Disclaimers**

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia

product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74HC594-Q100; 74HCT594-Q100

Nexperia

8-bit shift register with output register

18. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information
5	Functional diagram
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description
8	Limiting values
9	Recommended operating conditions
10	Static characteristics
11	Dynamic characteristics 1
12	Waveforms
13	Package outline
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks24
17	Contact information 2
12	Contents