imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

FAIRCHILD

SEMICONDUCTOR

74LCX16646 Low Voltage 16-Bit Transceiver/Register with 5V Tolerant Inputs and Outputs

General Description

The LCX16646 contains sixteen non-inverting bidirectional registered bus transceivers with 3-STATE outputs, providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The DIR inputs determine the direction of data flow through the device. The CPAB and CPBA inputs load data into the registers on the LOW-to-HIGH transition (see Functional Description).

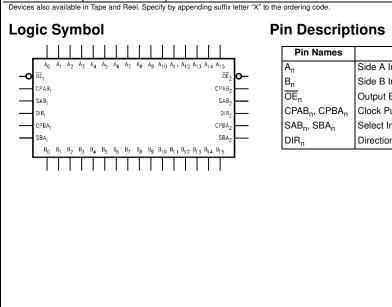
The LCX16646 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment.

The LCX16646 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- \blacksquare 5.2 ns t_{PD} max (V_{CC} = 3.3V), 20 μA I_{CC} max
- Power down high impedance inputs and outputs

February 1994


Revised August 2002

- Supports live insertion/withdrawal (Note 1)
- \blacksquare ±24 mA Output Drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance: Human Body Model > 2000V Machine Model > 200V

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX16646MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LCX16646MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Pin Names	Description
A _n	Side A Inputs or 3-STATE Outputs
B _n	Side B Inputs or 3-STATE Outputs
OEn	Output Enable Inputs
CPAB _n , CPBA _n	Clock Pulse Inputs
SAB _n , SBA _n	Select Inputs
DIR _n	Direction Control Inputs

74LCX16646 Low Voltage 16-Bit Transceiver/Register with 5V Tolerant Inputs and Outputs

© 2002 Fairchild Semiconductor Corporation DS012004 www.fairchildsemi.com

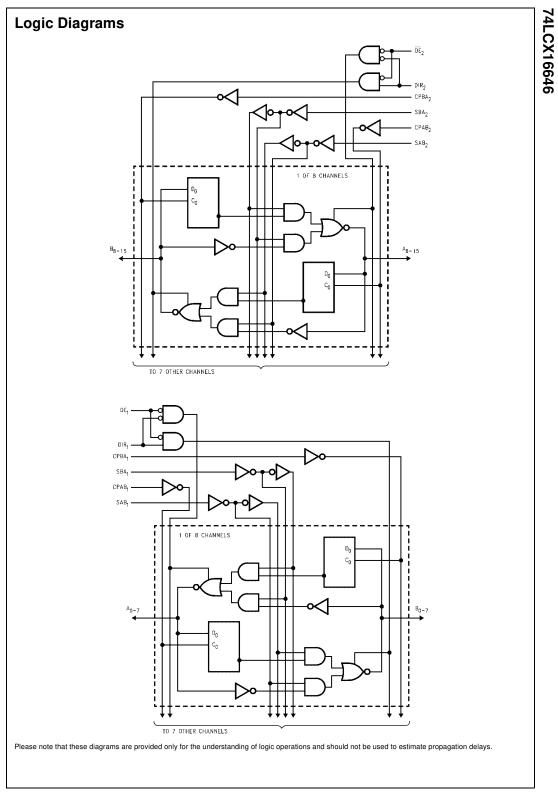
9			
74LCX16646	Connection Diagram		
16			
×	DIR ₁ -		56 — OE ₁
O,	CPAB ₁ -		55 — CPBA ₁
	SAB ₁ -		54 - SBA1
2	GND -		53 — GND
-	A ₀ -		52 — B ₀
	A ₁ -	6	51 — B ₁
	v _{cc} -		50 — V _{CC}
	A2 -	- 8	49 — B ₂
	A3 -	9	48 — B ₃
	A ₄ -	10	47 — B ₄
	GND -	11	46 - GND
	A5 -	12	45 — B ₅
	A ₆ -	13	44 — B ₆
	A ₇ -	14	43 — B ₇
	А ₈ –	15	42 — B ₈
	Ag -	16	4 1 - B ₉
	A ₁₀ -	17	40 - B ₁₀
	GND -	18	39 — GND
	A _{1 1} -	19	38 - B ₁₁
	A ₁₂ -	20	37 — B ₁₂
	A ₁₃ -	21	36 - B ₁₃
	v _{cc} -		35 — V _{CC}
	A ₁₄ -		34 - B ₁₄
	A ₁₅ -		33 - B ₁₅
	GND -		32 — GND
	SAB ₂ -	26	31 - SBA2

срав₂ — 27

DIR₂ 28

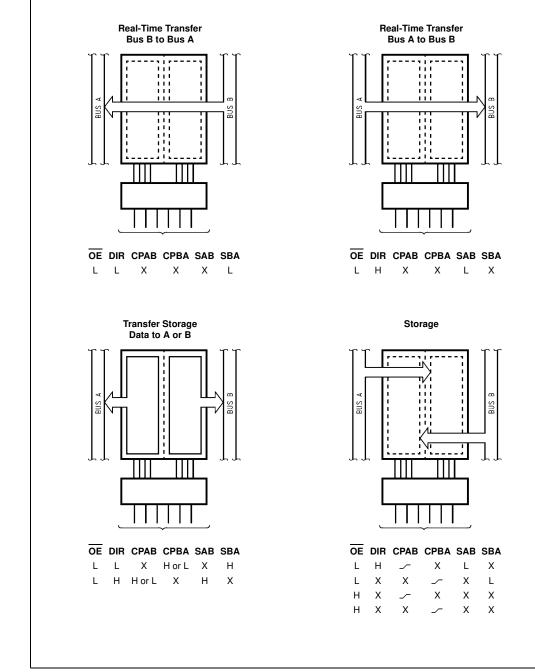
Truth Table

(Note 2)


Inputs						Data	a I/O	Output Operation Made
OE ₁	DIR ₁	CPAB ₁	CPBA ₁	SAB ₁	SBA ₁	A ₀₋₇	B ₀₋₇	Output Operation Mode
Н	Х	H or L	H or L	Х	Х			Isolation
Н	Х	~	Х	Х	Х	Input	Input	Clock An Data into A Register
Н	х	Х	~	х	х			Clock Bn Data Into B Register
L	Н	Х	Х	L	Х			An to Bn — Real Time (Transparent Mode)
L	н	~	Х	L	Х	Input	t Output Clock An Data to A Register	
L	н	H or L	Х	н	Х			A Register to B _n (Stored Mode)
L	н	~	Х	н	Х			Clock A_n Data into A Register and Output to B_n
L	L	Х	Х	Х	L			B _n to A _n — Real Time (Transparent Mode)
L	L	Х	~	Х	L	Output	out Input Clock B _n Data into B Register	
L	L	Х	H or L	Х	н			B Register to An (Stored Mode)
L	L	Х	~	Х	Н			Clock ${\rm B_n}$ into B Register and Output to ${\rm A_n}$

30 - CPBA₂ - 0E₂

29


H = HIGH Voltage Level X = Immaterial L = LOW Voltage Level ~ = LOW-to-HIGH Transition.

Note 2: The data output functions may be enabled or disabled by various signals at the \overline{OE} and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs. Also applies to data I/O (A and B: 8-15) and #2 control pins.

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select (SAB_n, SBA_n) controls can multiplex stored and real-time. The examples shown below demonstrate the four fundamental bus-management functions that can be performed. The direction control (DIR_n) determines which bus will receive data when \overline{OE}_n is LOW. In the isolation mode (\overline{OE}_n HIGH), A data may be stored in one register and/or B data may be stored in the other register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B, may be driven at a time.

www.fairchildsemi.com

4

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	v	
		–0.5 to V_{CC} + 0.5	Output in HIGH or LOW State (Note 4)	v	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
		+50	$V_{O} > V_{CC}$	IIIA	
l _o	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

74LCX16646

Recommended Operating Conditions (Note 5)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	2.0	3.6	V	
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA
		$V_{CC}=2.3V-2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

Note 5: Unused inputs and I/Os must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
Symbol	Farameter	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 – 3.6	2.0		v
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 – 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3 – 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μA
l _{oz}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	2.3 - 3.0		±3.0	μΑ
I _{OFF}	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0	1	10	μA

74LCX16646

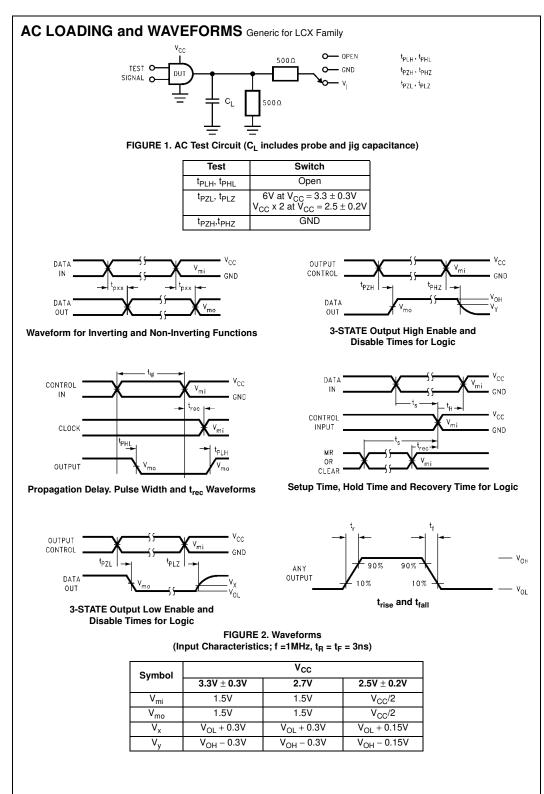
DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	T _A = -40°	C to +85°C	Units
Gymbol	i arameter	Conditions	(V)	Min	Max	Onits
ICC	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		20	μA
		$3.6V \le V_I, V_O \le 5.5V$ (Note 6)	2.3 - 3.6		±20	μ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA

Note 6: Outputs disabled or 3-STATE only.

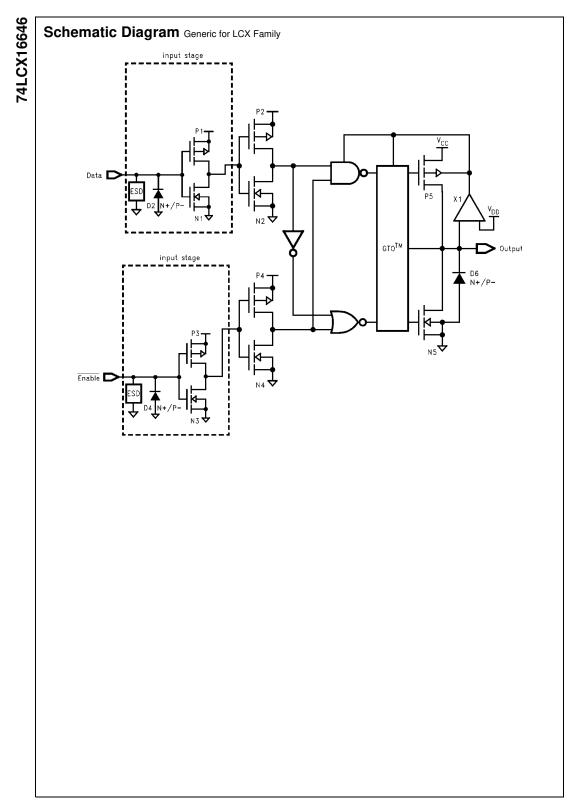
AC Electrical Characteristics

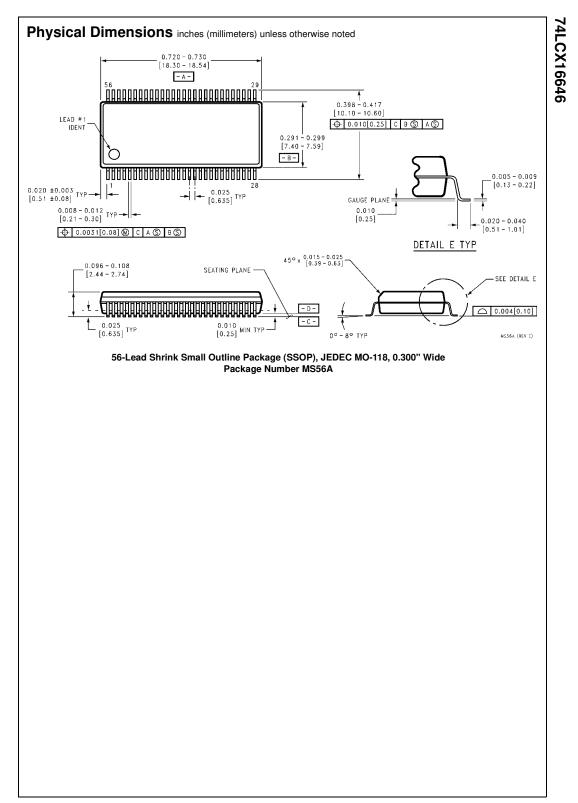
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
Symbol	Baumatan	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} =	= 2.7V	V _{CC} = 2.	$5V \pm 0.2V$	1114
	Parameter	C _L =	C _L = 50 pF		C _L = 30 pF		Units	
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	170						ns
t _{PHL}	Propagation Delay	1.5	5.2	1.5	6.0	1.5	6.2	
t _{PLH}	Bus to Bus	1.5	5.2	1.5	6.0	1.5	6.2	ns
t _{PHL}	Propagation Delay	1.5	6.0	1.5	7.0	1.5	7.2	
t _{PLH}	Clock to Bus	1.5	6.0	1.5	7.0	1.5	7.2	ns
t _{PHL}	Propagation Delay	1.5	6.0	1.5	7.0	1.5	7.2	ns
t _{PLH}	Select to Bus	1.5	6.0	1.5	7.0	1.5	7.2	115
t _{PZL}	Output Enable Time	1.5	7.5	1.5	8.5	1.5	9.8	
t _{PZH}		1.5	7.5	1.5	8.5	1.5	9.8	ns
t _{PLZ}	Output Disable Time	1.5	6.5	1.5	7.5	1.5	7.8	ns
t _{PHZ}		1.5	6.5	1.5	7.5	1.5	7.8	115
ts	Setup Time	2.5		2.5		3.0		ns
t _H	Hold Time	1.5		1.5		2.0		ns
tw	Pulse Width	3.0		3.0		3.5		ns
t _{OSHL}	Output to Output Skew (Note 7)		1.0					
t _{OSLH}			1.0					ns

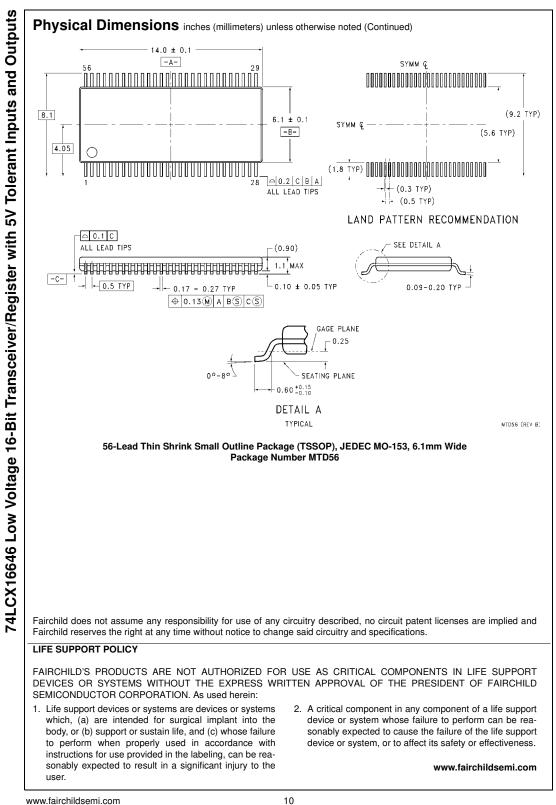

Note 7: Skew is defined as the absolute value of the oliference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSLL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$	Units
Cymbol	i di dificici	Contantions	(V)	Typical	onno
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3V, V_{IL} = 0V$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
CPD	Power Dissipation Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC},F = 10 MHz	20	pF



74LCX16646

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC