imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR TM

74LCX32500 Low Voltage 36-Bit Universal Bus Transceivers with 5V Tolerant Inputs and Outputs

General Description

These 36-bit universal bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in <u>each</u> direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs.

The LCX32500 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with the capability of interfacing to a 5V signal environment.

The LCX32500 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power.

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- 6.0 ns t_{PD} max (V_{CC} = 3.3V), 20 µA I_{CC} max
- Power down high impedance inputs and outputs

April 2001

Revised June 2002

- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA output drive (V_{CC} = 3.0V)
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:
 - Human body model > 2000V Machine model > 200V
- Packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} and OE tied to GND through a resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX32500G (Note 2)(Note 3)	BGA114A	114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
Nata O. Ondarian anda	"O" is disease Traces	

Note 2: Ordering code "G" indicates Trays.

Note 3: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 2002 Fairchild Semiconductor Corporation DS500406

74LCX32500

Connection Diagram					
	123456				
۷	000000				
B	000000				
U	000000				
D	000000				
ш	000000				
ш	000000				
ហ	000000				
т	000000				
r X	000000				
	000000				
	000000				
Σ	000000				
z	000000				
д.	000000				
ш	000000				
μ	000000				
⊃	000000				
>	000000				
8	000000				
ſ	Top Thru View)				

Truth Table (Note 4)

	Inputs				
OEAB _n	$OEAB_n$ $LEAB_n$ \overline{CLKAB}_n		An	Bn	
L	Х	Х	Х	Z	
н	Н	Х	L	L	
н	Н	Х	Н	н	
н	L	\downarrow	L	L	
н	L	\downarrow	Н	н	
н	L	н	Х	B ₀ (Note 5)	
Н	L	L	Х	B ₀ (Note 6)	

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs may not float)

Z = High Impedance

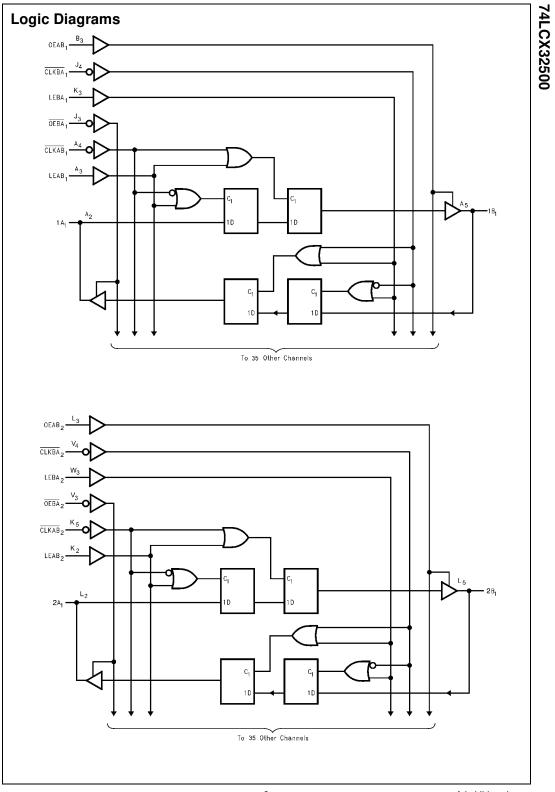
Note 4: A-to-B data flow is shown: B-to-A flow is similar but uses $\overline{\text{OEBA}},$ LEBA, and $\overline{\text{CLKBA}}.$

Note 5: Output level before the indicated steady-state input conditions were established.

Note 6: Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.

Functional Description

For A-to-B data flow, the LCX32500 operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the HIGH-to-LOW transition of CLKAB. Output-enable OEAB is active-HIGH. When OEAB is


Pin Descriptions

Pin Names	Description
1A ₁ - 1A ₁₈	Data Register A Inputs/3-STATE Outputs
2A ₁ - 2A ₁₈	
1B ₁ - 1B ₁₈	Data Register B Inputs/3-STATE Outputs
2B ₁ - 2B ₁₈	
CLKAB ₁ , CLKBA ₁	Clock Pulse Inputs
CLKAB ₂ , CLKBA ₂	
LEAB ₁ , LEBA ₁	Latch Enable Inputs
LEAB ₂ , LEBA ₂	
OEAB ₁ , OEBA ₁	Output Enable Inputs
$OEAB_2, \overline{OEBA}_2$	

FBGA Pin Assignments

	1	2	3	4	5	6
Α	1A ₂	1A ₁	LEAB ₁	CLKAB ₁	1B ₁	1B ₂
В	1A ₄	1A ₃	OEAB ₁	GND	1B ₃	1B ₄
С	1A ₆	1A ₅	GND	GND	1B ₅	1B ₆
D	1A ₈	1A ₇	V _{CC}	V _{CC}	1B ₇	1B ₈
E	1A ₁₀	1A ₉	GND	GND	1B ₉	1B ₁₀
F	1A ₁₂	1A ₁₁	GND	GND	1B ₁₁	1B ₁₂
G	1A ₁₄	1A ₁₃	V _{CC}	V _{CC}	1B ₁₃	1B ₁₄
н	1A ₁₅	1A ₁₆	GND	GND	1B ₁₆	1B ₁₅
J	1A ₁₇	1A ₁₈	OEBA ₁	CLKBA ₁	1B ₁₈	1B ₁₇
К	NC	LEAB ₂	LEBA ₁	GND	CLKAB ₂	NC
L	2A ₂	2A ₁	OEAB ₂	GND	2B ₁	2B ₂
М	2A ₄	2A ₃	GND	GND	2B ₃	2B ₄
Ν	2A ₆	2A ₅	V _{CC}	V _{CC}	2B ₅	2B ₆
Р	2A ₈	2A ₇	GND	GND	2B ₇	2B ₈
R	2A ₁₀	2A ₉	GND	GND	2B ₉	2B ₁₀
т	2A ₁₂	2A ₁₁	V _{CC}	V _{CC}	2B ₁₁	2B ₁₂
U	2A ₁₄	2A ₁₃	GND	GND	2B ₁₃	2B ₁₄
v	2A ₁₅	2A ₁₆	$\overline{\text{OEBA}}_2$	CLKBA ₂	2B ₁₆	2B ₁₅
W	2A ₁₇	2A ₁₈	LEBA ₂	GND	2B ₁₈	2B ₁₇

HIGH, the outputs are active. When OEAB is LOW, the outputs are in the high impedance state.

74LCX32500

Absolute Maximum Ratings(Note 7)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 8)	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	ША
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 9)

Symbol	DI Parameter			Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	v
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	v
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA
		$V_{CC}=2.3V-2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 7: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 8: I_O Absolute Maximum Rating must be observed.

Note 9: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol		Conditions	(V)	Min	Max	Units
/ _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 – 3.6	2.0		v
/ _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 – 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -8 \text{ mA}$	2.3	1.8		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 - 3.6		±5.0	μA
l _{oz}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 – 3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	2.5 - 5.0		±3.0	μΑ
I _{OFF}	Power-Off Leakage Current	$V_{1} \text{ or } V_{0} = 5.5 \text{ V}$	0		10	μA

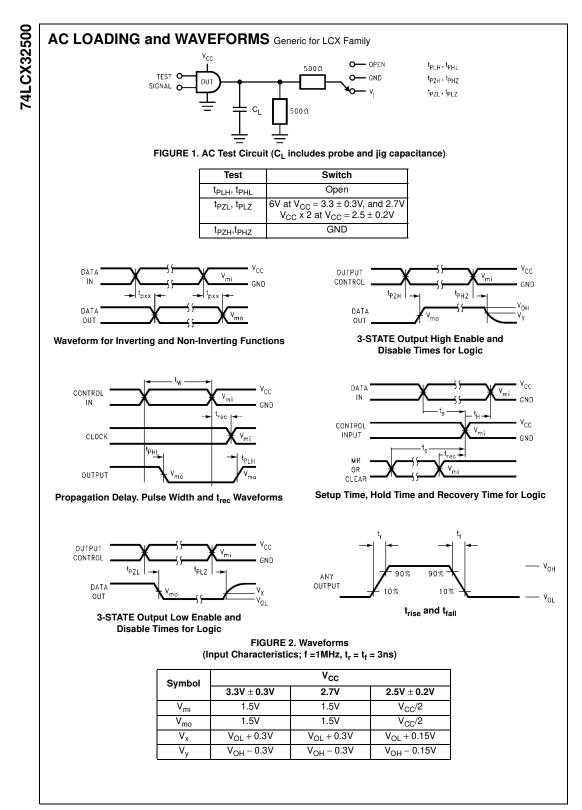
DC Electrical Characteristics (Continued)

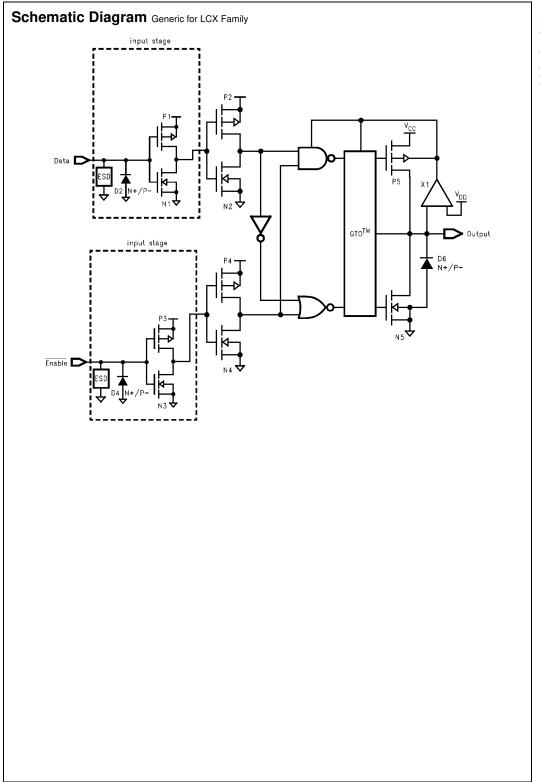
Symbol	Parameter	Conditions	v _{cc}	T _A = -40°0	Units	
Symbol	i aranteter	Conditions	(V)	Min	Max	Onita
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 3.6		20	μA
		$3.6V \le V_I, V_O \le 5.5V$ (Note 10)	2.3 - 3.6		±20	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA

74LCX32500

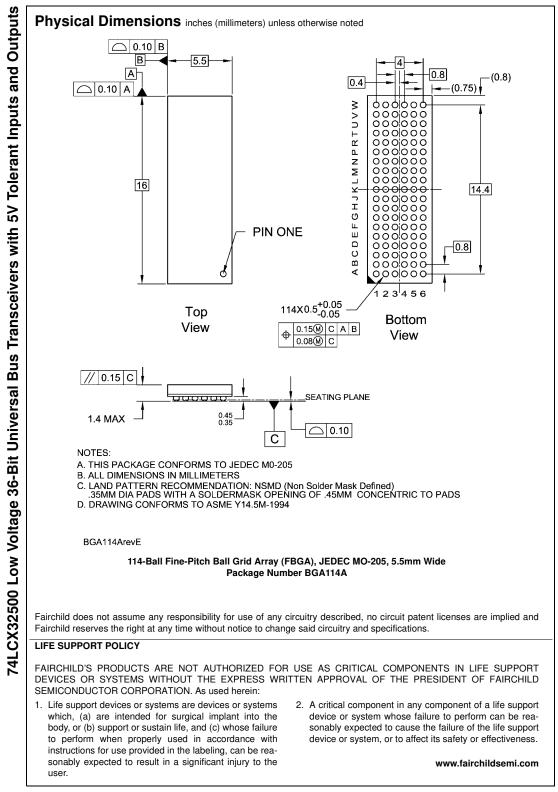
Note 10: Outputs disabled or 3-STATE only.

AC Electrical Characteristics


	Parameter		TA	= −40°C to +	$85^{\circ}C, R_{L} = 50^{\circ}$	Ω 00			
Cumhal		V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} =	= 2.7V	V _{CC} = 2.	$5V \pm 0.2V$	Units	
Symbol	Farameter	C _L =	C _L = 50 pF		50 pF	C _L =	30 pF	Units	
		Min	Max	Min	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	170						MHz	
t _{PHL}	Propagation Delay	1.5	6.0	1.5	7.0	1.5	7.2	ns	
t _{PLH}	Bus to Bus	1.5	6.0	1.5	7.0	1.5	7.2	115	
t _{PHL}	Propagation Delay	1.5	6.7	1.5	8.0	1.5	8.4		
t _{PLH}	Clock to Bus	1.5	6.7	1.5	8.0	1.5	8.4	ns	
t _{PHL}	Propagation Delay	1.5	7.0	1.5	8.0	1.5	8.4		
t _{PLH}	LE to Bus	1.5	7.0	1.5	8.0	1.5	8.4	ns	
t _{PZL}	Output Enable Time	1.5	7.2	1.5	8.2	1.5	9.4	ns	
t _{PZH}		1.5	7.2	1.5	8.2	1.5	9.4	115	
t _{PLZ}	Output Disable Time	1.5	7.0	1.5	8.0	1.5	8.4		
t _{PHZ}		1.5	7.0	1.5	8.0	1.5	8.4	ns	
ts	Setup Time	2.5		2.5		3.0		ns	
t _H	Hold Time	1.5		1.5		2.0		ns	
tw	Pulse Width	3.0		3.0		3.5		ns	


Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{cc}	V_{CC} $T_A = 25^{\circ}C$	
Symbol		Conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley VOL	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L=30\ pF,\ V_{IH}=2.5V,\ V_{IL}=0V$	2.5	-0.6	v


Capacitance

Symbol	Parameter	Parameter Conditions		Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V, V_I = 0V \text{ or } V_{CC}$	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3V, V_I = 0V or V_{CC} , f = 10 MHz	20	pF

74LCX32500

