mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74LV138 3-to-8 line decoder/demultiplexer; inverting Rev. 4 — 4 March 2016

Product data sheet

1. General description

The 74LV138 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC138 and 74HCT138.

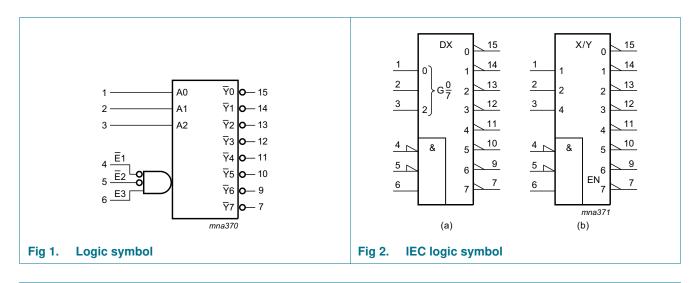
The 74LV138 is a 3-to-8 line decoder/demultiplexer. It accepts three binary weighted address inputs (A0, A1 and A2) and, when enabled, provides eight mutually exclusive active LOW outputs ($\overline{Y0}$ to $\overline{Y7}$).

There are three enable inputs: two active LOW ($\overline{E}1$ and $\overline{E}2$) and one active HIGH (E3). Every output will be HIGH unless $\overline{E}1$ and $\overline{E}2$ are LOW and E3 is HIGH.

This multiple enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four 74LV138 devices and one inverter. The 74LV138 can be used as an eight output demultiplexer by using one of the active LOW enable inputs as the data input and the remaining enable inputs as strobes. Unused enable inputs must be permanently tied to their appropriate active HIGH or LOW state.

2. Features and benefits

- Wide operating voltage: 1.0 V to 5.5 V
- Optimized for low voltage applications: 1.0 V to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical output ground bounce < 0.8 V at V_{CC} = 3.3 V and T_{amb} = 25 °C
- Typical HIGH-level output voltage (V_{OH}) undershoot: > 2 V at V_{CC} = 3.3 V and T_{amb} = 25 °C
- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- Active LOW mutually exclusive outputs
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C


nexperia

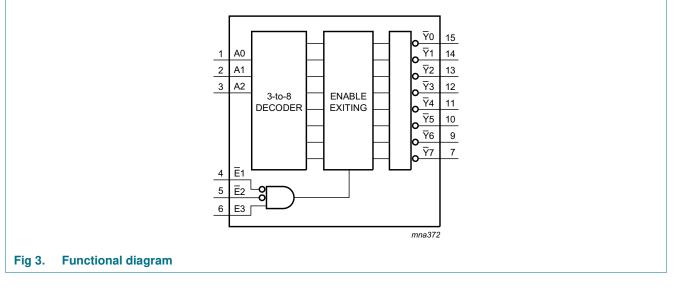
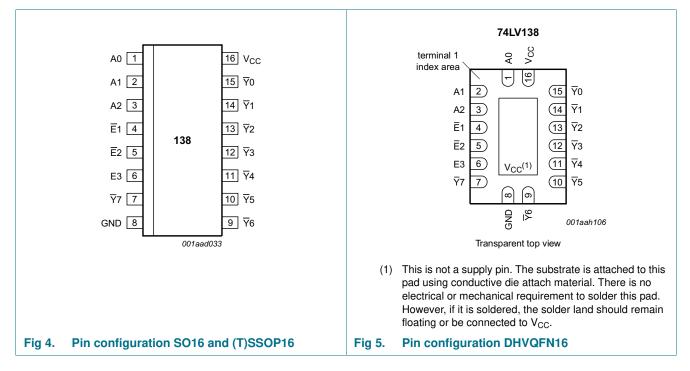

3. Ordering information

Table 1.	Ordering	information
	e ao ing	

Type number	Package				
	Temperature range	Name	Description	Version	
74LV138D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1	
74LV138DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1	
74LV138PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1	
74LV138BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	SOT763-1	


4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.Pin description

Symbol	Pin	Description
A0	1	address input
A1	2	address input
A2	3	address input
Ē1	4	enable input (active LOW)
Ē2	5	enable input (active LOW)
E3	6	enable input (active HIGH)
GND	8	ground (0 V)
$\overline{Y}0$ to $\overline{Y}7$	15, 14, 13, 12, 11, 10, 9, 7	output
V _{CC}	16	supply voltage

6. Functional description

Table 3. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care

Input						Outp	ut						
E1	E2	E3	A0	A1	A2	<u>Y</u> 0	<u></u> <u> </u> 1	<u>Y</u> 2	<u></u> ¥3	<u>¥</u> 4	¥5	<u>¥</u> 6	¥7
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Х	L	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5$ V or $V_{I} > V_{CC} + 0.5$ V	[1]	-	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	[1]	-	±50	mA
lo	output current	$V_{O} = -0.5 \text{ V} \text{ to } (V_{CC} + 0.5 \text{ V})$		-	±25	mA
I _{CC}	supply current			-	50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$				
		SO16 package	<u>[2]</u>	-	500	mW
		(T)SSOP16 package	<u>[3]</u>	-	500	mW
		DHVQFN16 package	<u>[4]</u>	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] P_{tot} derates linearly with 8 mW/K above 70 °C.

[3] $~~P_{tot}$ derates linearly with 5.5 mW/K above 60 °C.

[4] P_{tot} derates linearly with 4.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage ^[1]		1.0	3.3	5.5	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 1.0 \text{ V} \text{ to } 2.0 \text{ V}$	-	-	500	ns/V
		V_{CC} = 2.0 V to 2.7 V	-	-	200	ns/V
		V_{CC} = 2.7 V to 3.6 V	-	-	100	ns/V
		V _{CC} = 3.6 V to 5.5 V	-	-	50	ns/V

[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to V_{CC} = 5.5 V, but LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

9. Static characteristics

Table 6. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	85 °C	–40 °C to	+125 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
V _{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V
		V _{CC} = 2.0 V	1.4	-	-	1.4	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
		V _{CC} = 4.5 V to 5.5 V	$0.7V_{CC}$	-	-	0.7V _{CC}	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	$0.3V_{CC}$	-	$0.3V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$						
		$I_{O} = -100 \ \mu A; V_{CC} = 1.2 \ V$	-	1.2	-	-	-	V
		$I_{O} = -100 \ \mu A; V_{CC} = 2.0 \ V$	1.8	2.0	-	1.8	-	V
		$I_{O} = -100 \ \mu A; V_{CC} = 2.7 \ V$	2.5	2.7	-	2.5	-	V
		$I_{O} = -100 \ \mu A; V_{CC} = 3.0 \ V$	2.8	3.0	-	2.8	-	V
		$I_{O} = -100 \ \mu A; V_{CC} = 4.5 \ V$	4.3	4.5	-	4.3	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	2.82	-	2.2	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.6	4.2	-	3.5	-	V

3-to-8 line decoder/demultiplexer; inverting

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	o +125 ℃	Unit
			Min	Typ[1]	Max	Min	Max	
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$						
		$I_{O} = 100 \ \mu A; V_{CC} = 1.2 \ V$	-	0	-	-	-	V
		$I_{O} = 100 \ \mu A; V_{CC} = 2.0 \ V$	-	0	0.2	-	0.2	V
		$I_0 = 100 \ \mu\text{A}; \ V_{CC} = 2.7 \ \text{V}$	-	0	0.2	-	0.2	V
		$I_{O} = 100 \ \mu A; V_{CC} = 3.0 \ V$	-	0	0.2	-	0.2	V
		$I_{O} = 100 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	-	0	0.2	-	0.2	V
		$I_{O} = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.25	0.40	-	0.50	V
		$I_{O} = 12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.35	0.55	-	0.65	V
I	input leakage current	$V_I = V_{CC} \text{ or GND};$ $V_{CC} = 5.5 \text{ V}$	-	-	1.0	-	1.0	μA
сс	supply current		-	-	20.0	-	160	μA
∆I _{CC}	additional supply current	per input; $V_{I} = V_{CC} - 0.6 V$; $V_{CC} = 2.7 V$ to 3.6 V	-	-	500	-	850	μA
Ci	input capacitance		-	3.5	-	-	-	pF

Table 6.Static characteristics ... continuedVoltages are referenced to GND (around = 0 V)

[1] Typical values are measured at $T_{amb} = 25 \text{ °C}$.

10. Dynamic characteristics

Table 7.Dynamic characteristics

GND = 0 V; For test circuit see Figure 8.

Symbol	Parameter	Conditions		-40	°C to +85	5 °C	–40 °C t	to +125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	An to \overline{Y} n; see Figure 6	[2]						
		V _{CC} = 1.2 V		-	75	-	-	-	ns
		V _{CC} = 2.0 V		-	26	44	-	55	ns
		V _{CC} = 2.7 V		-	19	31	-	39	ns
		$V_{CC} = 3.0 \text{ V}$ to 3.6 V; $C_{L} = 15 \text{ pF}$	<u>[3]</u>	-	12	-	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	<u>[3]</u>	-	15	26	-	32	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		-	-	17	-	22	ns
		E3, \overline{En} to \overline{Yn} ; see $\underline{Figure 6}$ and $\underline{Figure 7}$							
		V _{CC} = 1.2 V		-	75	-	-	-	ns
		V _{CC} = 2.0 V		-	26	43	-	53	ns
		V _{CC} = 2.7 V		-	19	30	-	38	ns
		$V_{CC} = 3.0 \text{ V}$ to 3.6 V; $C_L = 15 \text{ pF}$	<u>[3]</u>	-	14	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	-	15	25	-	31	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		-	-	19	-	24	ns

3-to-8 line decoder/demultiplexer; inverting

Symbol Parameter Conditions -40 °C to +85 °C -40 °C to +125 °C Unit Min Typ[1] Max Min Max $C_L = 50 \text{ pF}; f_i = 1 \text{ MHz};$ [4] CPD power dissipation 45 pF _ _ _ _ $V_I = GND$ to V_{CC} capacitance

Table 7. Dynamic characteristics ... continued

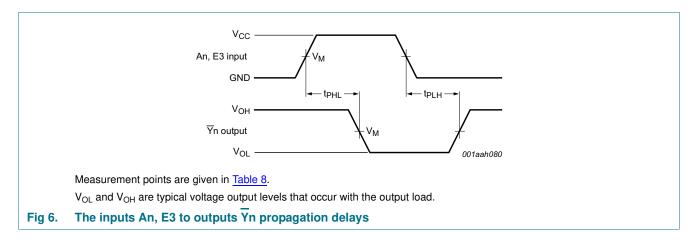
GND = 0 V; For test circuit see Figure 8.

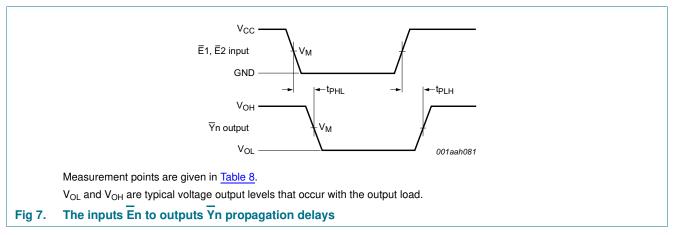
[1]	All typical values are r	measured at	Tamb = 2	5 °C.
L.1	7 in typical values are i	modourou ut	· amo – –	0.0.

- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
- Typical values are measured at nominal supply voltage ($V_{CC} = 3.3 \text{ V}$). [3]
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz, f_o = output frequency in MHz

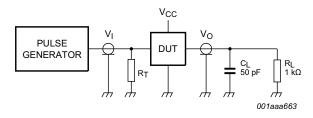

C_L = output load capacitance in pF


V_{CC} = supply voltage in V

N = number of inputs switching

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

11. Waveforms



3-to-8 line decoder/demultiplexer; inverting

Supply voltage	Input	Output
V _{cc}	V _M	V _M
< 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V to 3.6 V	1.5 V	1.5 V
≥ 4.5 V	0.5V _{CC}	0.5V _{CC}

Test data is given in Table 9.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

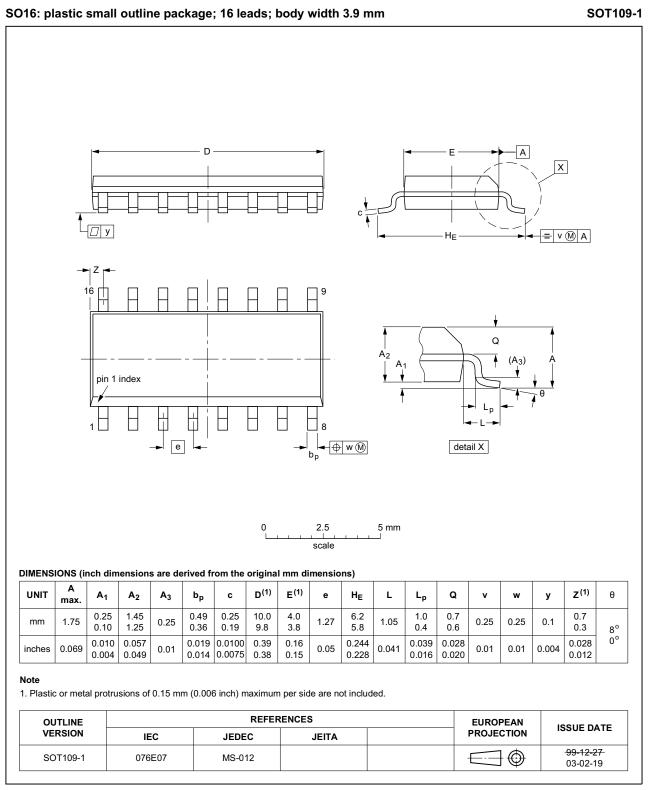

Fig 8. Test circuit for measuring switching times

Table 9. Test data

Supply voltage	nput			
V _{cc}	V _I t _r , t _f			
< 2.7 V	V _{CC}	≤ 2.5 ns		
2.7 V to 3.6 V	2.7 V	≤ 2.5 ns		
≥ 4.5 V	V _{CC}	≤ 2.5 ns		

3-to-8 line decoder/demultiplexer; inverting

12. Package outline

Fig 9. Package outline SOT109-1 (SO16)

3-to-8 line decoder/demultiplexer; inverting

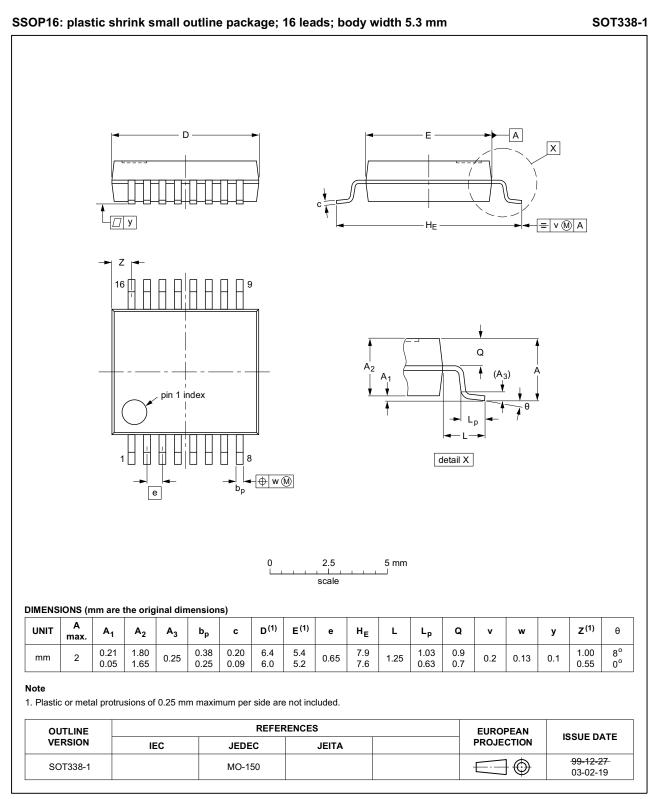


Fig 10. Package outline SOT338-1 (SSOP16)

All information provided in this document is subject to legal disclaimers.

3-to-8 line decoder/demultiplexer; inverting

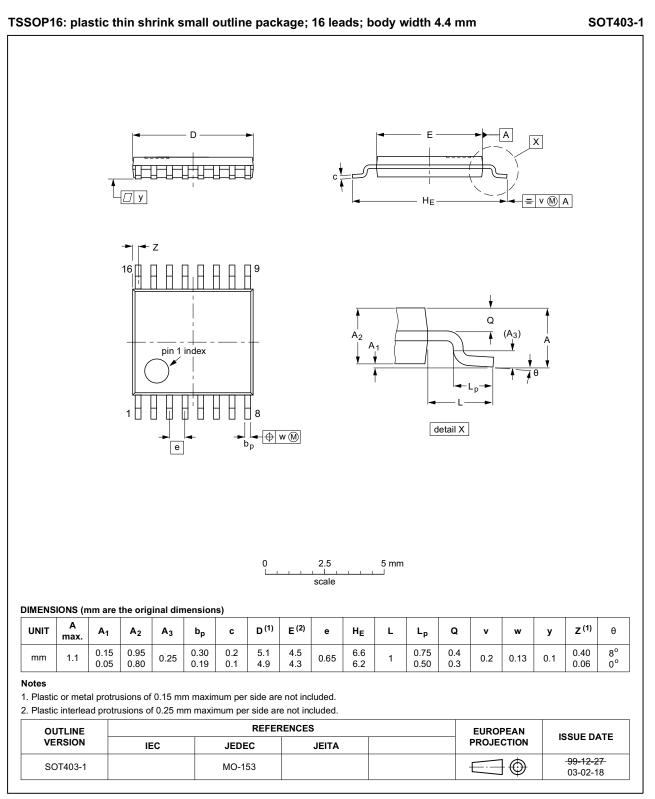
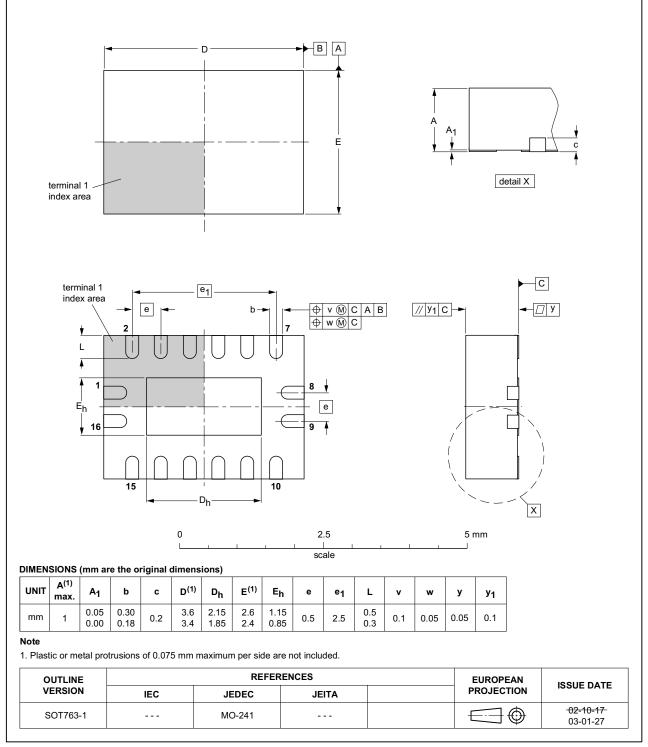



Fig 11. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 12. Package outline SOT763-1 (DHVQFN16)

13. Abbreviations

Table 10. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LV138 v.4	20160304	Product data sheet	-	74LV138 v.3		
Modifications:	Type number 74LV138N (SOT38-4) removed.					
74LV138 v.3	20071115	Product data sheet	-	74LV138 v.2		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	<u>Section 3</u> : DHVQFN16 package added.					
	 <u>Section 8</u>: derating values added for DHVQFN16 package. 					
	 <u>Section 12</u>: outline drawing added for DHVQFN16 package. 					
74LV138 v.2	19980428	Product specification	-	74LV138 v.1		
74LV138 v.1	19970203	Product specification	-	-		

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

Nexperia

74LV138

3-to-8 line decoder/demultiplexer; inverting

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

3-to-8 line decoder/demultiplexer; inverting

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 6
11	Waveforms 7
12	Package outline 9
13	Abbreviations 13
14	Revision history 13
15	Legal information 14
15.1	Data sheet status 14
15.2	Definitions 14
15.3	Disclaimers
15.4	Trademarks 15
16	Contact information 15
17	Contents 16