imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Apr 07 IC24 Data Handbook 1998 May 20

74LV174

FEATURES

- Wide operating voltage: 1.0 to 5.5V
- Optimized for Low Voltage applications: 1.0 to 3.6V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) $< 0.8V @ V_{CC} = 3.3V$, T_{amb} = 25°C
- Typical V_{OHV} (output V_{OH} undershoot) > 2V @ V_{CC} = 3.3V, T_{amb} = 25°C
- Output capability: standard
- I_{CC} category: MSI

DESCRIPTION

The 74LV174 is a low-voltage Si-gate CMOS device and is pin and function compatible with the 74HC/HCT174.

The 74LV174 has six edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common clock (CP) and master reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one set-up time prior to the LOW-to-HIGH clock transition, is transferred to the corresponding output of the flip-flop.

A LOW level on the MR input forces all outputs LOW, independently of clock or data inputs.

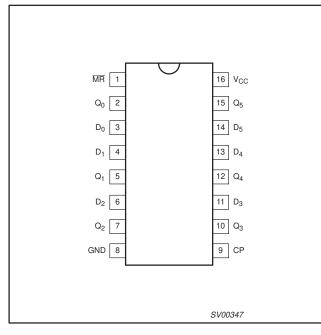
The device is useful for applications requiring true outputs only and clock and master reset inputs that are common to all storage elements.

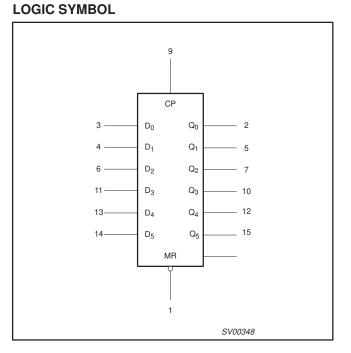
QUICK REFERENCE DATA

GND = 0V: T_{omb} = 25°C: t_r = t_f < 2.5 ns

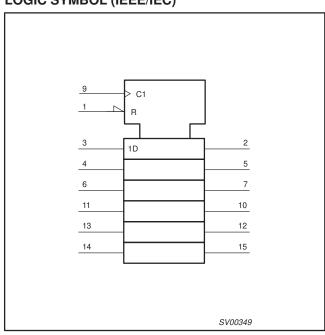
SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
STMBOL	PARAMETER	CONDITIONS	ITPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay CP to Q _n MR to Q _n	C _L = 15pF V _{CC} = 3.3V	16 13	ns
f _{max}	Maximum clock frequency		77	MHz
CI	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per flip-flop	V _{CC} = 3.3V Notes 1 and 2	17	pF

NOTES:

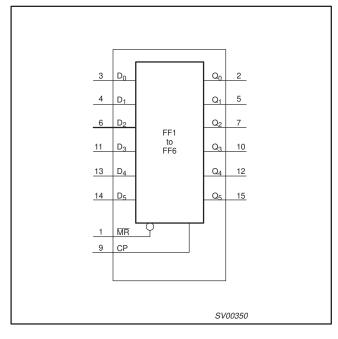

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: $f_i =$ input frequency in MHz; C_L = output load capacitance in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V; $\Sigma (C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs. 2. The condition is V_I = GND to V_{CC}


ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	–40°C to +125°C	74LV174 N	74LV174 N	SOT38-4
16-Pin Plastic SO	–40°C to +125°C	74LV174 D	74LV174 D	SOT109-1
16-Pin Plastic SSOP Type II	-40°C to +125°C	74LV174 DB	74LV174 DB	SOT338-1
16-Pin Plastic TSSOP	-40°C to +125°C	74LV174 PW	74LV174PW DH	SOT403-1


74LV174

LOGIC SYMBOL (IEEE/IEC)



PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	MR	Asynchronous master reset (active LOW)
2, 5, 7, 10, 12, 15	Q_0 to Q_5	Flip-flop outputs
3, 4, 6, 11, 13, 14	D ₀ to D ₅	Data inputs
8	GND	Ground (0V)
9	CP	Clock input (LOW-to-HIGH, edge- triggered)
16	V _{CC}	Positive supply voltage

74LV174

FUNCTIONAL DIAGRAM

FUNCTION TABLE

OPERATING MODES		INPUTS		OUTPUTS
OPERATING MODES	MR	СР	D _n	Q ₀
Reset (clear)	L	Х	Х	L
Load '1'	Н	↑	h	Н
Load '0'	Н	↑	Ι	L

Н = HIGH voltage level

- HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition h =
 - =

LOW voltage level LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition = q

= Lower case letter indicates the state of referenced input one set-up time prior to the LOW-to-HIGH CP transition LOW-to-HIGH clock transition

=

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note1	1.0	3.3	5.5	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$\begin{array}{l} V_{CC} = 1.0V \mbox{ to } 2.0V \\ V_{CC} = 2.0V \mbox{ to } 2.7V \\ V_{CC} = 2.7V \mbox{ to } 3.6V \\ V_{CC} = 3.6V \mbox{ to } 5.5V \end{array}$			500 200 100 50	ns/V

L

L

↑

NOTES:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

74LV174

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134)

Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
±I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5 V$	20	mA
±Ι _{ΟΚ}	DC output diode current	$V_{\rm O}$ < -0.5 or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5V	50	mA
±Ι _Ο	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
±I _{GND} , ±I _{CC}	DC V _{CC} or GND current for types with -standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
PTOT Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)		for temperature range: -40 to +125°C above +70°C derate linearly with 12mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC CHARACTERISTICS FOR THE LV FAMILY

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-4(0°C to +8	5°C	-40°C to	o +125°C	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	
		$V_{CC} = 1.2V$	0.9			0.9		
VIH	HIGH level Input	$V_{CC} = 2.0V$	1.4			1.4		
VIH	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0		1 `
		V _{CC} = 4.5 to 5.5V	0.7*V _{CC}			0.7*V _{CC}		
		$V_{CC} = 1.2V$			0.3		0.3	
V.	LOW level Input	$V_{CC} = 2.0V$			0.6		0.6	
V _{IL}	voltage	V _{CC} = 2.7 to 3.6V			0.8		0.8	1 `
		V _{CC} = 4.5 to 5.5			0.3*V _{CC}		0.3*V _{CC}	1
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$		1.2				
		$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$	1.8	2.0		1.8		1
	HIGH level output voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.5	2.7		2.5		V
	vonago, an carputo	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} - I_O = 100 \mu A$	2.8	3.0		2.8		1
V _{OH}		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$	4.3	4.5		4.3		1
	HIGH level output $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = V_{IH} \text{ or } V_{IL}; -I$		2.40	2.82		2.20		v
	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 12mA$	3.60	4.20		3.50		
		V_{CC} = 1.2V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0				
		V_{CC} = 2.0V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2]
	LOW level output voltage; all outputs	V_{CC} = 2.7V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	V
V		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
VOL	V _{OL}	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
	LOW level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6mA$		0.25	0.40		0.50	v
	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12mA$		0.35	0.55		0.65	

74LV174

DC CHARACTERISTICS FOR THE LV FAMILY (Continued)

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					
31MBOL	FARAMETER	TEST CONDITIONS	-40°C to +85°C			-40°C to	UNIT	
lı	Input leakage current	V_{CC} = 5.5V; V_{I} = V_{CC} or GND			1.0		1.0	μA
Icc	Quiescent supply current; MSI	V_{CC} = 5.5V; V_I = V_{CC} or GND; I_O = 0			20.0		160	μA
ΔI _{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$			500		850	μΑ

NOTE:

1. All typical values are measured at T_{amb} = 25°C.

AC CHARACTERISTICS

 $GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF; R_L = 1K\Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION	_	LIMITS 40 to +85	C		IITS +125 °C	UNIT	
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX		
			1.2	-	100	-	-	-		
			2.0	-	34	43	-	53		
t _{PHL} /t _{PLH}	Propagation delay CP to Q _n	Figure 1	2.7	-	25	31	-	39	ns	
			3.0 to 3.6	-	19 ²	25	-	31		
			4.5 to 5.5	-	13 ³	21	-	26		
			1.2	-	80	-	-	-		
			2.0	-	27	43	-	53		
t _{PHL}	Propagation delay MR to Q _n	Figure 2	2.7	-	20	31	-	39	ns	
	initio di		3.0 to 3.6	-	15 ²	25	-	31		
		4.5 to 5.5	-	11 ³	21	-	26			
			2.0	34	10	-	41	-		
+ ·	Clock pulse width	Figure 1	2.7	25	8	-	30	-	ns	
tw	HIGH to LOW		3.0 to 3.6	20	6 ²	-	24	-		
			4.5 to 5.5	13	4 ³		16			
			2.0	34	9	-	41	-		
+ ·	Master reset pulse	Figure 2	2.7	25	6	-	30	-		
tw	width LOW	Figure 2	3.0 to 3.6	20	5	-	24	-	ns	
			4.5 to 5.5	13	4 ²		16			
			1.2	-	-20	-	-	-		
			2.0	5	-7	-	5	-		
t _{rem}	Removal time MR to CP	Figure 2	2.7	5	-5	-	5	-	ns	
			3.0 to 3.6	5	-4 ²	-	5	-		
			4.5 to 5.5	5	-3 ³		5			
			1.2	-	10	-	-	-		
			2.0	22	4	-	26	-		
t _{su}	Set-up time D _n to CP	Figure 3	2.7	16	3	-	19	-	ns	
			3.0 to 3.6	13	2 ²	-	15	-	1	
			4.5 to 5.5	9	1 ³		10			

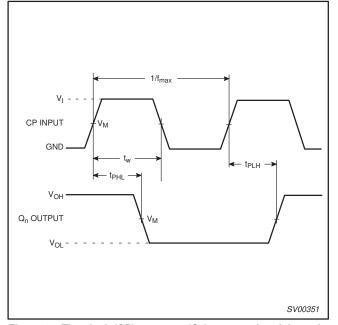
74LV174

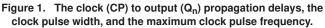
AC CHARACTERISTICS (Continued)

GND = 0V; $t_r = t_f = 2.5ns$; $C_L = 50pF$; $R_L = 1K\Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION	_	LIMITS -40 to +85 °C			LIMITS -40 to +125 °C		
		I [V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX		
			1.2	-	-10	-	-	-		
		Ι Γ	2.0	5	-4	-	5	-		
t _h Hold time D _n to CP	Figure 3	2.7	5	-2	-	5	-	ns		
	54 10 01	[3.0 to 3.6	5	-2 ²	-	5	-		
		I [4.5 to 5.5	5	-1 ³		5			
			2.0	14	40	-	12	-		
f	Maximum clock	Eiguro 1	2.7	19	58	-	16	-	MHz	
Imax pulse frequence	pulse frequency	y Figure 1	3.0 to 3.6	24	70 ²	-	20	-	IVITIZ	
		I [4.5 to 5.5	36	100 ³		30			

NOTES:

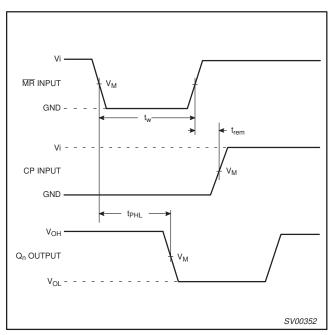

1. Unless otherwise stated, all typical values are at $T_{amb} = 25^{\circ}C$.

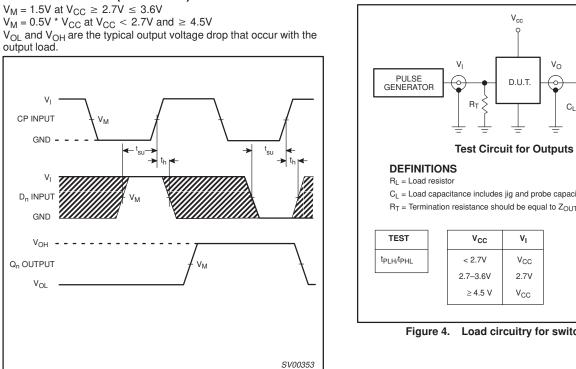

2. Typical value measured at $V_{CC} = 3.3V$.

3. Typical value measured at $V_{CC} = 5.0V$.

AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge 2.7V \le 3.6V$ V_M = 0.5V * V_{CC} at $V_{CC} < 2.7V$ and $\ge 4.5V$ V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.



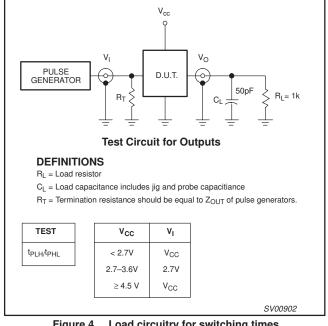

Figure 2. The master reset ($\overline{\text{MR}}$) pulse width, the master reset to output (Q_n) propagation delay and the master reset to clock removal time.

AC WAVEFORMS (Continued)

Hex D-type flip-flop with reset; positive edge-trigger

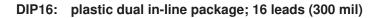
74LV174

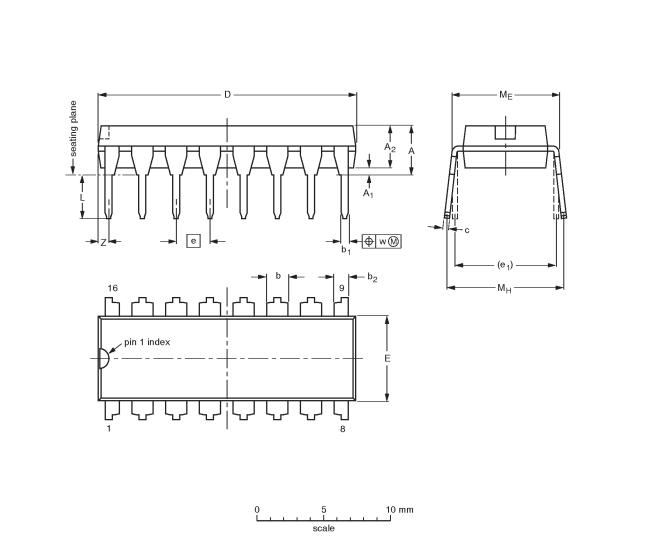
Product specification



8

Figure 3. Data set-up and hold times for the data input (D_{n).} NOTE:

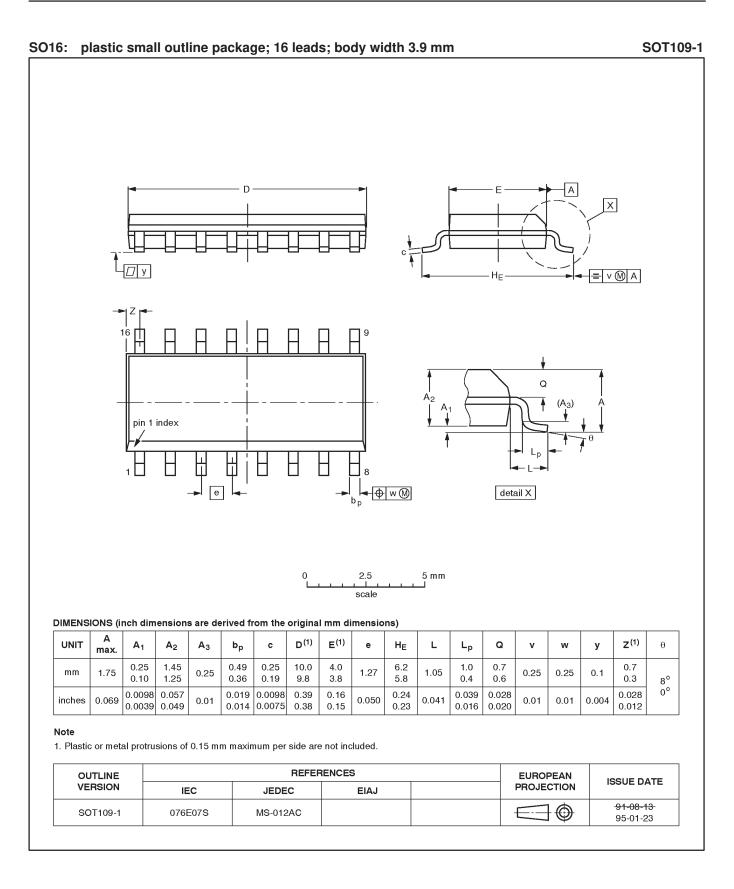

The shaded areas indicate when the input is permitted to change for predictable output performance.


TEST CIRCUIT

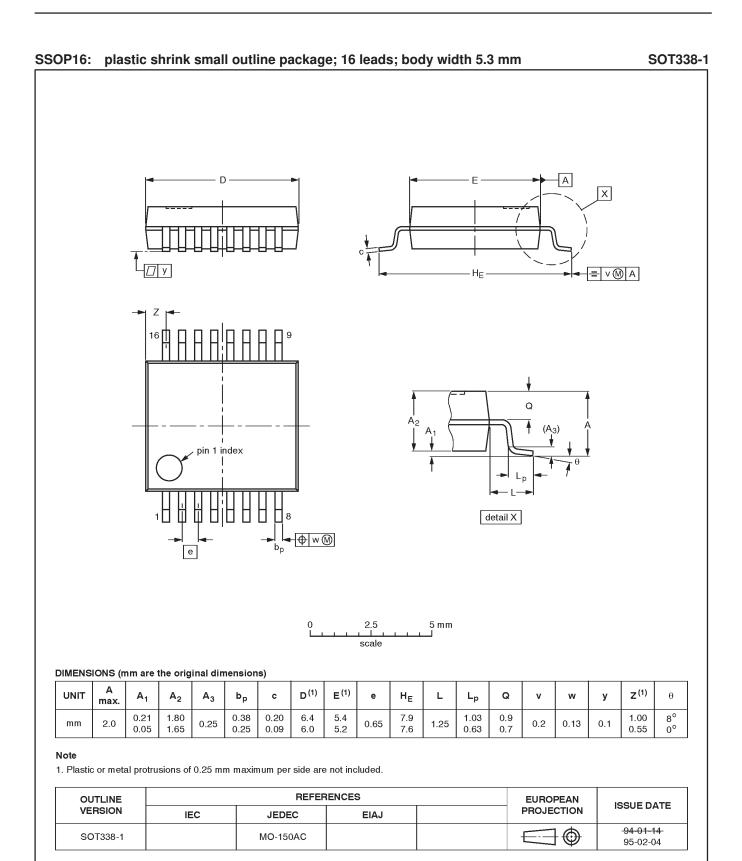
Load circuitry for switching times

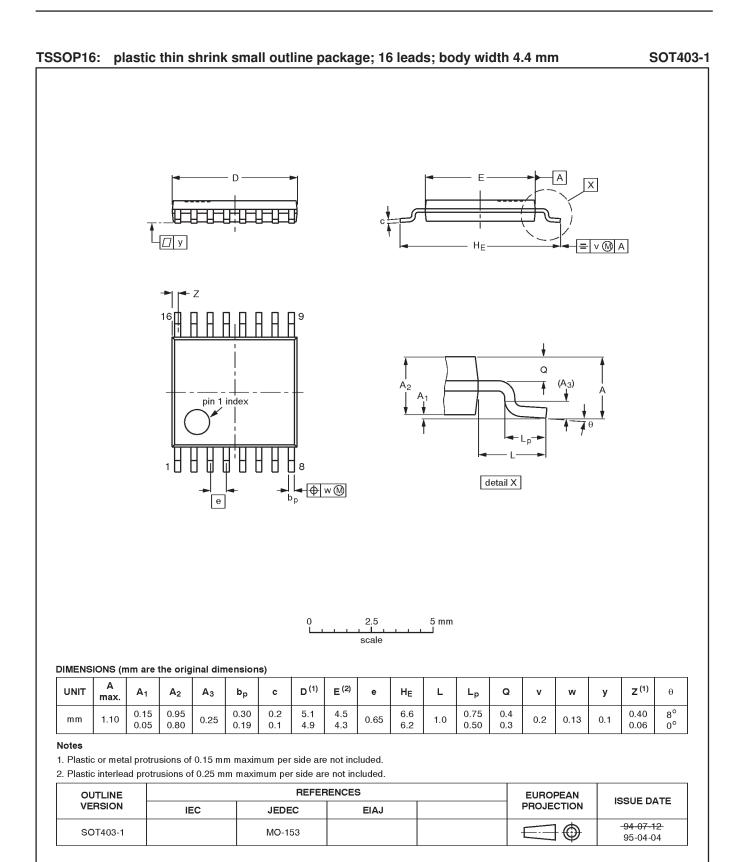
1998 May 20

DIMENSIONS (inch dimensions are derived from the original mm dimensions)


UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE VERSION		REFER	EUROPEAN	ISSUE DATE		
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-4						-92-11-17 95-01-14

Product specification

10

Product specification

NOTES

13

74LV174

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381

© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Date of release: 05-96

Document order number:

9397-750-04433

Let's make things better.

PHILIPS