

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74LV4051

8-channel analog multiplexer/demultiplexer Rev. 6 — 17 March 2016

Product data sheet

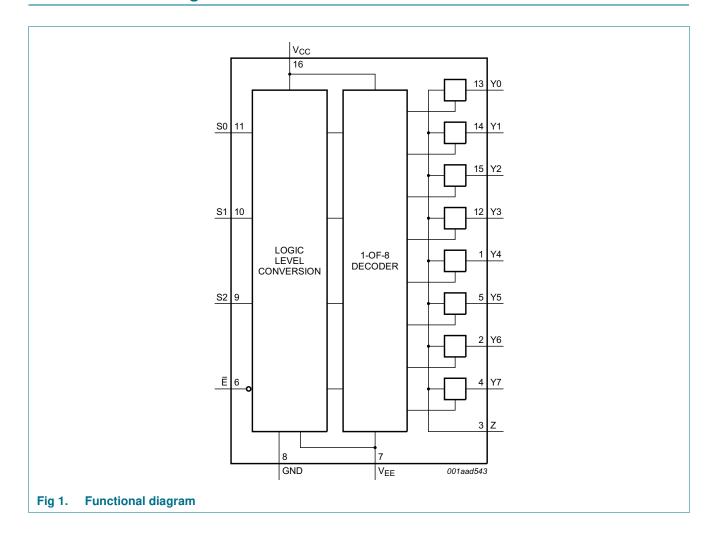
General description 1.

The 74LV4051 is an 8-channel analog multiplexer/demultiplexer with three digital select inputs (S0 to S2), an active-LOW enable input (E), eight independent inputs/outputs (Y0 to Y7) and a common input/output (Z). It is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC4051 and 74HCT4051. With E LOW, one of the eight switches is selected (low impedance ON-state) by S0 to S2. With E HIGH, all switches are in the high-impedance OFF-state, independent of S0 to S2.

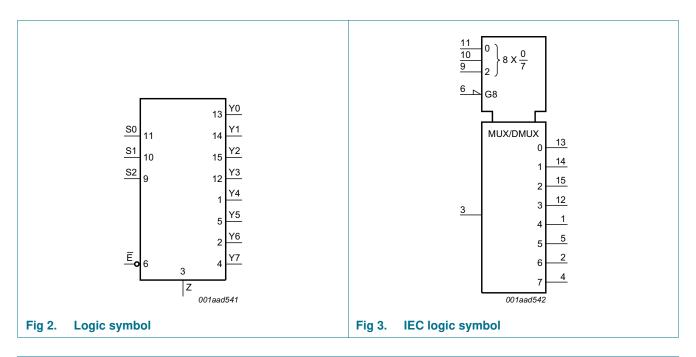
 V_{CC} and GND are the supply voltage pins for the digital control inputs (S0 to S2, and \overline{E}). The V_{CC} to GND ranges are 1.0 V to 6.0 V. The analog inputs/outputs (Y0 to Y7, and Z) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. $V_{CC} - V_{EE}$ may not exceed 6.0 V. For operation as a digital multiplexer/demultiplexer, VEE is connected to GND (typically ground).

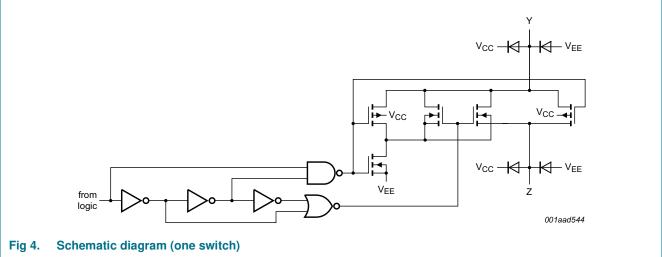
Features and benefits 2.

- Optimized for low-voltage applications: 1.0 V to 6.0 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Low ON resistance:
 - ♦ 145 Ω (typical) at $V_{CC} V_{EE} = 2.0 \text{ V}$
 - 80 Ω (typical) at $V_{CC} V_{EE} = 3.0 \text{ V}$
 - 60 Ω (typical) at $V_{CC} V_{EE} = 4.5 \text{ V}$
- Logic level translation:
 - ◆ To enable 3 V logic to communicate with ±3 V analog signals
- Typical 'break before make' built in
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C


8-channel analog multiplexer/demultiplexer

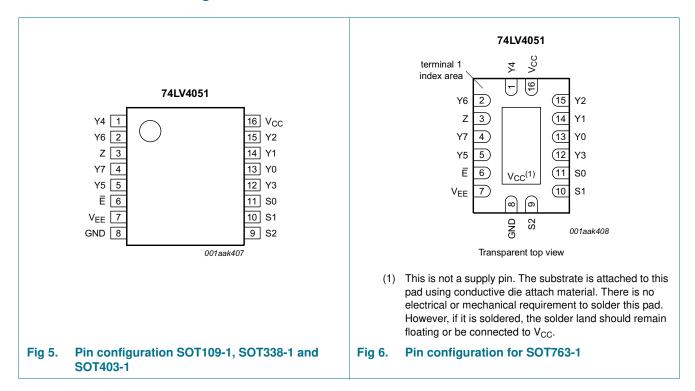
3. Ordering information


Table 1. Ordering information


Type number	Package							
	Temperature range	Name	Description	Version				
74LV4051D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74LV4051DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1				
74LV4051PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
74LV4051BQ	-40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	SOT763-1				

4. Functional diagram

8-channel analog multiplexer/demultiplexer



8-channel analog multiplexer/demultiplexer

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Ē	6	enable input (active LOW)
V _{EE}	7	supply voltage
GND	8	ground supply voltage
S0, S1, S2	11, 10, 9	select input
Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7	13, 14, 15, 12, 1, 5, 2, 4	independent input or output
Z	3	common output or input
V _{CC}	16	supply voltage

8-channel analog multiplexer/demultiplexer

6. Functional description

6.1 Function table

Table 3. Function table[1]

Input				Channel ON
E	S2	S1	S0	
L	L	L	L	Y0 to Z
L	L	L	Н	Y1 to Z
L	L	Н	L	Y2 to Z
L	L	Н	Н	Y3 to Z
L	Н	L	L	Y4 to Z
L	Н	L	Н	Y5 to Z
L	Н	Н	L	Y6 to Z
L	Н	Н	Н	Y7 to Z
Н	X	Х	X	switches off

^[1] H = HIGH voltage level;

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to V_{SS} = 0 V (ground).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage		[1]	-0.5	+7.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	[2]	-	±20	mA
I _{SK}	switch clamping current	$V_{SW} < -0.5 \text{ V or } V_{SW} > V_{CC} + 0.5 \text{ V}$	[2]	-	±20	mA
I _{SW}	switch current	$V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V};$ source or sink current	[2]	-	±25	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3]			
		SO16 package		-	500	mW
		TSSOP16 package		-	500	mW
		DHVQFN16 package		-	500	mW

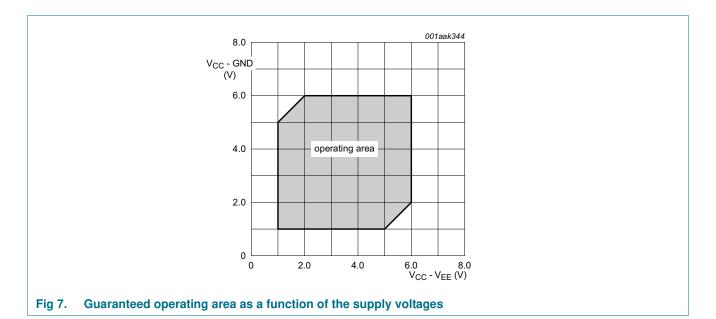
^[1] To avoid drawing V_{CC} current out of terminal Z, when switch current flows into terminals Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Yn, and in this case there is no limit for the voltage drop across the switch, but the voltages at Yn and Z may not exceed V_{CC} or V_{EE} .

L = LOW voltage level;

X = don't care.

^[2] The minimum input voltage rating may be exceeded if the input current rating is observed.

^[3] For SO16 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K.
For SSOP16 and TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.
For DHVQFN16 packages: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.


8-channel analog multiplexer/demultiplexer

8. Recommended operating conditions

Table 5. Recommended operating conditions[1]

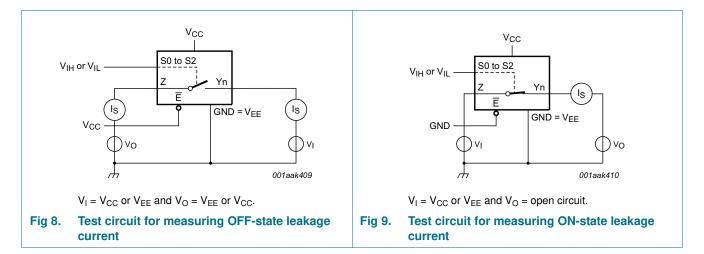
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	see Figure 7	1	3.3	6	V
V _I	input voltage		0	-	V _{CC}	V
V _{SW}	switch voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 1.0 V to 2.0 V	-	-	500	ns/V
		V _{CC} = 2.0 V to 2.7 V	-	-	200	ns/V
		V _{CC} = 2.7 V to 3.6 V	-	-	100	ns/V

^[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to 6.0 V, but LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

8-channel analog multiplexer/demultiplexer

9. Static characteristics

Table 6. Static characteristics


At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	٧
		V _{CC} = 2.0 V	1.4	-	-	1.4	-	٧
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	2.0	-	٧
		V _{CC} = 4.5 V	3.15	-	-	3.15	-	٧
		$V_{CC} = 6.0 \text{ V}$	4.20	-	-	4.20	-	٧
V_{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	٧
		$V_{CC} = 2.0 \text{ V}$	-	-	0.6	-	0.6	٧
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	-	0.8	٧
		V _{CC} = 4.5 V	-	-	1.35	-	1.35	٧
		$V_{CC} = 6.0 \text{ V}$	-	-	1.80	-	1.80	٧
l _I	input leakage current	$V_I = V_{CC}$ or GND						
		V _{CC} = 3.6 V	-	-	1.0	-	1.0	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_I = V_{IH}$ or V_{IL} ; see <u>Figure 8</u>						
		V _{CC} = 3.6 V	-	-	1.0	-	1.0	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	2.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; see <u>Figure 9</u>						
		V _{CC} = 3.6 V	-	-	1.0	-	1.0	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A						
		V _{CC} = 3.6 V	-	-	20	-	40	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	40	-	80	μΑ
ΔI_{CC}	additional supply current	per input; $V_I = V_{CC} - 0.6 \text{ V}$; $V_{CC} = 2.7 \text{ V}$ to 3.6 V	-	-	500	-	850	μΑ
Cı	input capacitance		-	3.5	-	-	-	pF
C _{sw}	switch capacitance	independent pins Yn	-	5	-	-	-	pF
		common pin Z	-	25	-	-	-	рF

^[1] Typical values are measured at T_{amb} = 25 °C.

8-channel analog multiplexer/demultiplexer

9.1 Test circuits

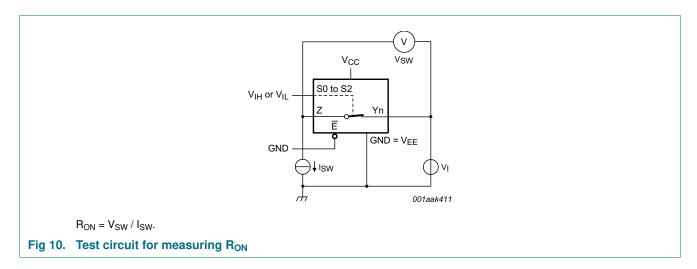
9.2 ON resistance

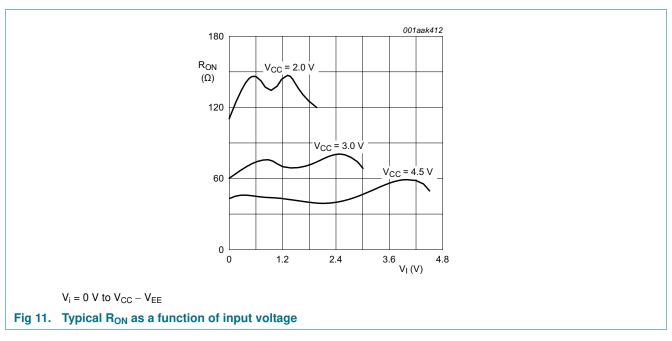
Table 7. ON resistanceAt recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see <u>Figure 10</u> and <u>Figure 11</u>.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_I = 0 V \text{ to } V_{CC} - V_{EE}$						
		V _{CC} = 1.2 V; I _{SW} = 100 μA [2]	-	-	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	145	325	-	375	Ω
		$V_{CC} = 2.7 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	90	200	-	235	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	80	180	-	210	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	60	135	-	160	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	55	125	-	145	Ω
ΔR_{ON}	ON resistance mismatch	$V_I = 0 V \text{ to } V_{CC} - V_{EE}$						
	between channels	V _{CC} = 1.2 V; I _{SW} = 100 μA [2]	-	-	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	5	-	-	-	Ω
		$V_{CC} = 2.7 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	4	-	-	-	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	4	-	-	-	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	3	-	-	-	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	2	-	-	-	Ω

8-channel analog multiplexer/demultiplexer

Table 7. ON resistance ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see <u>Figure 10</u> and Figure 11.


Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(rail)}	ON resistance (rail)	V _I = GND						
		$V_{CC} = 1.2 \text{ V}; I_{SW} = 100 \mu\text{A}$	-	225	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	110	235	-	270	Ω
		$V_{CC} = 2.7 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	70	145	-	165	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	60	130	-	150	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	45	100	-	115	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	40	85	-	100	Ω
R _{ON(rail)}	ON resistance (rail)	$V_I = V_{CC} - V_{EE}$						
		$V_{CC} = 1.2 \text{ V}; I_{SW} = 100 \mu\text{A}$ [2]	-	250	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	120	320	-	370	Ω
		$V_{CC} = 2.7 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	75	195	-	225	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	70	175	-	205	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	50	130	-	150	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	45	120	-	135	Ω


^[1] Typical values are measured at T_{amb} = 25 °C.

^[2] When supply voltages $(V_{CC} - V_{EE})$ near 1.2 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 1.2 V, it is recommended to use these devices only for transmitting digital signals.

8-channel analog multiplexer/demultiplexer

9.3 On resistance waveform and test circuit

8-channel analog multiplexer/demultiplexer

10. Dynamic characteristics

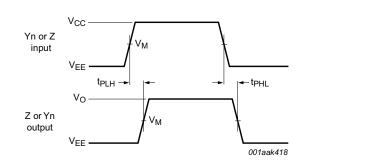
Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 14.

Symbol	Parameter	Conditions	-40	°C to +85	5 °C	-40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	Yn to Z, Z to Yn; see Figure 12						
		V _{CC} = 1.2 V	-	25	-	-	-	ns
		V _{CC} = 2.0 V	-	9	17	-	20	ns
		V _{CC} = 2.7 V	-	6	13	-	15	ns
		V _{CC} = 3.0 V to 3.6 V	-	5	10	-	12	ns
		V _{CC} = 4.5 V	-	4	9	-	10	ns
		V _{CC} = 6.0 V	-	3	8	-	8	ns
t _{en} enable time	enable time	E to Yn, Z; see Figure 13						
		V _{CC} = 1.2 V	-	145	-	-	-	ns
		V _{CC} = 2.0 V	-	49	94	-	112	ns
		V _{CC} = 2.7 V	-	36	69	-	83	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$ [3]	-	23	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	28	55	-	66	ns
		V _{CC} = 4.5 V	-	25	47	-	56	ns
		V _{CC} = 6.0 V	-	19	38	-	43	ns
		Sn to Yn; see Figure 13						
		V _{CC} = 1.2 V	-	140	-	-	-	ns
		V _{CC} = 2.0 V	-	48	90	-	107	ns
		V _{CC} = 2.7 V	-	35	66	-	79	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$	-	22	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	27	53	-	63	ns
		V _{CC} = 4.5 V	-	24	45	-	54	ns
		V _{CC} = 6.0 V	-	18	34	-	41	ns

8-channel analog multiplexer/demultiplexer

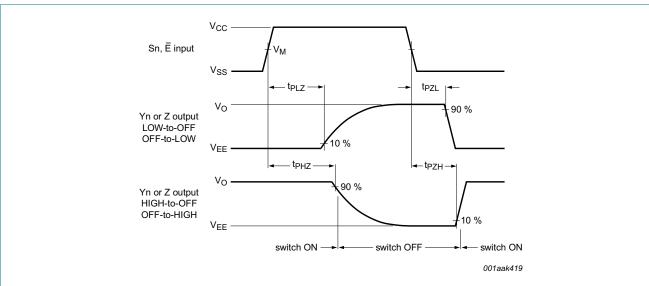
 Table 8.
 Dynamic characteristics ...continued


Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 14.

Symbol	Parameter	Conditions	-40	°C to +85	5 °C	–40 °C t	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
t _{dis}	disable time	E to Yn, Z; see Figure 13						
		V _{CC} = 1.2 V	-	145	-	-	-	ns
		V _{CC} = 2.0 V	-	51	93	-	110	ns
		V _{CC} = 2.7 V	-	38	69	-	82	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$	-	25	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	30	56	-	66	ns
		V _{CC} = 4.5 V	-	29	48	-	56	ns
		V _{CC} = 6.0 V	-	21	37	-	44	ns
		Sn to Yn; see Figure 13						
		V _{CC} = 1.2 V	-	115	-	-	-	ns
		V _{CC} = 2.0 V	-	41	73	-	90	ns
		V _{CC} = 2.7 V	-	31	54	-	67	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$	-	20	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	24	44	-	54	ns
		V _{CC} = 4.5 V	-	22	37	-	46	ns
		V _{CC} = 6.0 V	-	17	29	-	36	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f_i = 1 MHz; [4] V_I = GND to V_{CC}	-	25	-	-	-	pF

- [1] All typical values are measured at T_{amb} = 25 °C.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
 - t_{en} is the same as t_{PZL} and $t_{\text{PZH}}.$
 - t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [3] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V).
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma((C_L + C_{SW}) \times V_{CC}^2 \times f_o) \text{ where:}$
 - f_i = input frequency in MHz, f_o = output frequency in MHz
 - C_L = output load capacitance in pF
 - C_{SW} = maximum switch capacitance in pF;
 - V_{CC} = supply voltage in Volts
 - N = number of inputs switching
 - $\Sigma(C_L\times V_{CC}{}^2\times f_o)$ = sum of the outputs.

8-channel analog multiplexer/demultiplexer

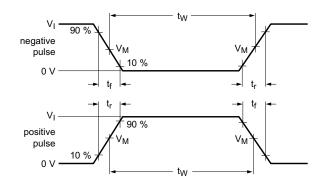

10.1 Waveforms

Measurement points are given in Table 9.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 12. Propagation delay input (Yn or Z) to output (Z or Yn)

Measurement points are given in Table 9.


 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical voltage output levels that occur with the output load.

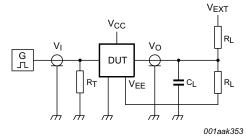

Fig 13. Enable and disable times

Table 9. Measurement points

Supply voltage	Input	Output					
V _{CC}	V _M	V _M	V _X	V _Y			
< 2.7 V	0.5V _{CC}	0.5V _{CC}	$V_{OL} + 0.1V_{CC}$	V _{OH} – 0.1V _{CC}			
2.7 V to 3.6 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V			
> 3.6 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.1V _{CC}	V _{OH} – 0.1V _{CC}			

8-channel analog multiplexer/demultiplexer

Test data is given in Table 10.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 14. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	oltage Input Load			Load		V _{EXT}		
V _{CC}	VI	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
< 2.7 V	V _{CC}	≤ 6 ns	50 pF	1 kΩ	open	V _{EE}	2V _{CC}	
2.7 V to 3.6 V	2.7 V	≤ 6 ns	15 pF, 50 pF	1 kΩ	open	V _{EE}	2V _{CC}	
> 3.6 V	V _{CC}	≤ 6 ns	50 pF	1 kΩ	open	V _{EE}	2V _{CC}	

8-channel analog multiplexer/demultiplexer

10.2 Additional dynamic parameters

Table 11. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); V_I = GND or V_{CC} (unless otherwise specified); $t_r = t_f \le 6.0$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD total harmonic		$f_i = 1 \text{ kHz}$; $C_L = 50 \text{ pF}$; $R_L = 10 \text{ k}\Omega$; see Figure 19				
	distortion	$V_{CC} = 3.0 \text{ V}; V_I = 2.75 \text{ V (p-p)}$	-	0.8	-	%
		$V_{CC} = 6.0 \text{ V}; V_I = 5.5 \text{ V (p-p)}$	-	0.4	-	%
		f_i = 10 kHz; C_L = 50 pF; R_L = 10 k Ω ; see Figure 19				
		$V_{CC} = 3.0 \text{ V}; V_I = 2.75 \text{ V (p-p)}$	-	2.4	-	%
		$V_{CC} = 6.0 \text{ V}; V_I = 5.5 \text{ V (p-p)}$	-	1.2	-	%
f _(-3dB)	-3 dB frequency	$C_L = 50 \text{ pF}; R_L = 50 \Omega; \text{ see } \frac{\text{Figure 15}}{}$				
	response	V _{CC} = 3.0 V	-	180	-	MHz
		V _{CC} = 6.0 V	-	200	-	MHz
α_{iso}	isolation (OFF-state)	$f_i = 1 \text{ MHz}$; $C_L = 50 \text{ pF}$; $R_L = 600 \Omega$; see Figure 17				
		V _{CC} = 3.0 V	-	-50	-	dB
		V _{CC} = 6.0 V	-	-50	-	dB
V _{ct}	crosstalk voltage	between digital inputs and switch; $f_i = 1 \text{ MHz}$; $C_L = 50 \text{ pF}$; $R_L = 600 \Omega$; see Figure 20				
		V _{CC} = 3.0 V	-	0.11	-	V
		V _{CC} = 6.0 V	-	0.12	-	V
Xtalk	crosstalk	between switches; f_i = 1 MHz; C_L = 50 pF; R_L = 600 Ω ; see Figure 21				
		V _{CC} = 3.0 V	-	-60	-	dB
		V _{CC} = 6.0 V	-	-60	-	dB

^[1] Adjust f_i voltage to obtain 0 dBm level at output for 1 MHz (0 dBm = 1 mW into 50 Ω).

^[2] Adjust f_i voltage to obtain 0 dBm level at output for 1 MHz (0 dBm = 1 mW into 600 Ω).

8-channel analog multiplexer/demultiplexer

10.2.1 Test circuits

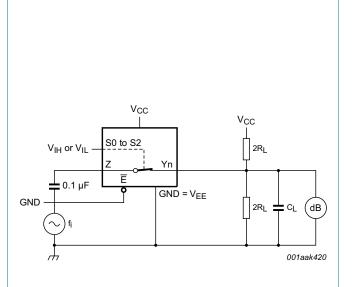
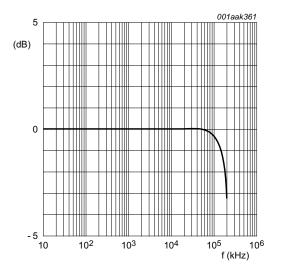



Fig 15. Test circuit for measuring frequency response

 V_{CC} = 3.0 V; GND = 0 V; V_{EE} = -3.0 V; R_L = 50 $\Omega;$ R_{SOURCE} = 1 $k\Omega.$

Fig 16. Typical frequency response

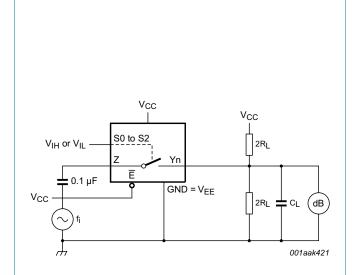
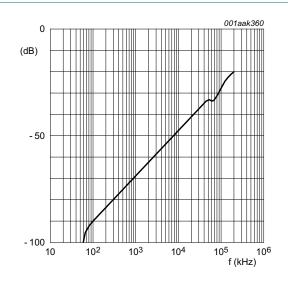



Fig 17. Test circuit for measuring isolation (OFF-state)

 V_{CC} = 3.0 V; GND = 0 V; V_{EE} = -3.0 V; R_L = 50 $\Omega;$ R_{SOURCE} = 1 $k\Omega.$

Fig 18. Typical isolation (OFF-state) as function of frequency

8-channel analog multiplexer/demultiplexer

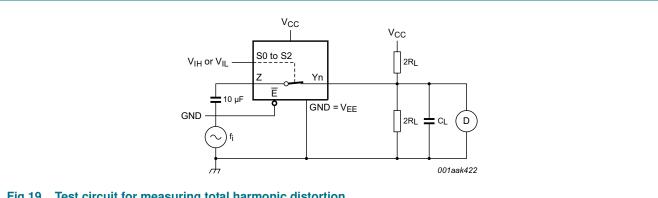
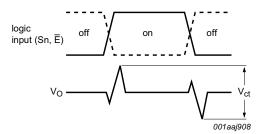
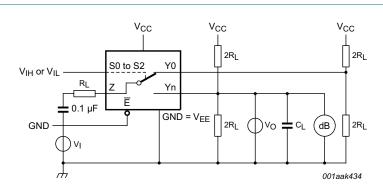



Fig 19. Test circuit for measuring total harmonic distortion


a. Test circuit

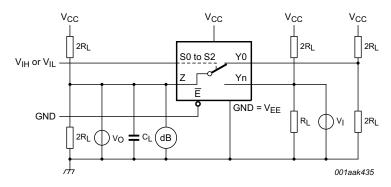
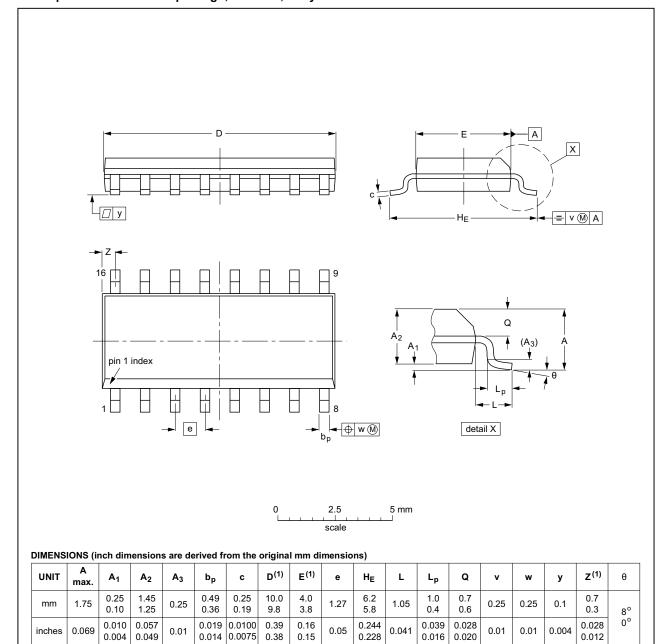

b. Input and output pulse definitions V_I may be connected to Sn or \overline{E} .

Fig 20. Test circuit for measuring crosstalk voltage between digital inputs and switch

8-channel analog multiplexer/demultiplexer

a. Switch closed condition

b. Switch open condition


Fig 21. Test circuit for measuring crosstalk between switches

8-channel analog multiplexer/demultiplexer

11. Package outline

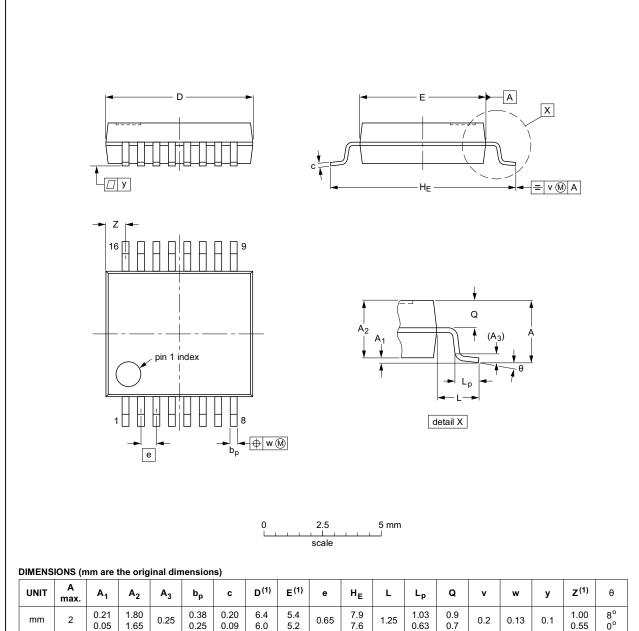
SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012			99-12-27 03-02-19


Fig 22. Package outline SOT109-1 (SO16)

V4051 All information provided in this document is subject to legal disclaimers.

8-channel analog multiplexer/demultiplexer

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

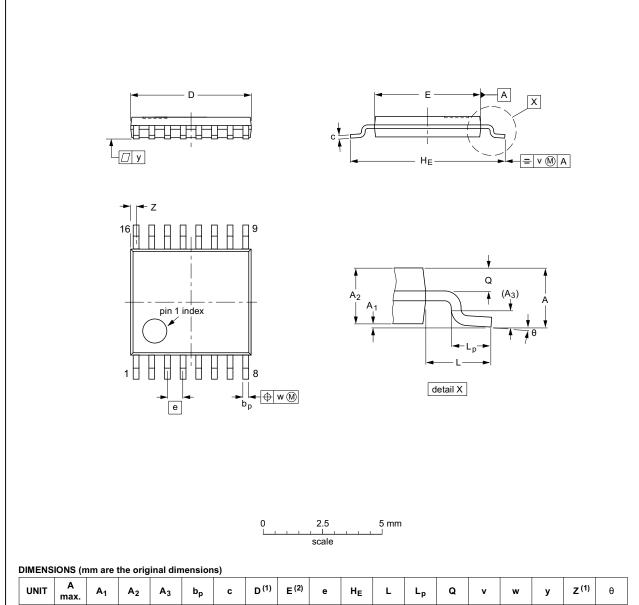
SOT338-1

UNIT	A max.	A ₁	A ₂	A ₃	b _p	C	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT338-1		MO-150			99-12-27 03-02-19


Fig 23. Package outline SOT338-1 (SSOP16)

74LV4051 All information provided in this document is subject to legal disclaimers.

8-channel analog multiplexer/demultiplexer

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

UNI	IT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mn	n	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

	OUTLINE		REFER	EUROPEAN	ISSUE DATE		
	VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	SOT403-1		MO-153				-99-12-27 03-02-18
L	SOT403-1		MO-153				$\exists \oplus$

Fig 24. Package outline SOT403-1 (TSSOP16)

8-channel analog multiplexer/demultiplexer

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

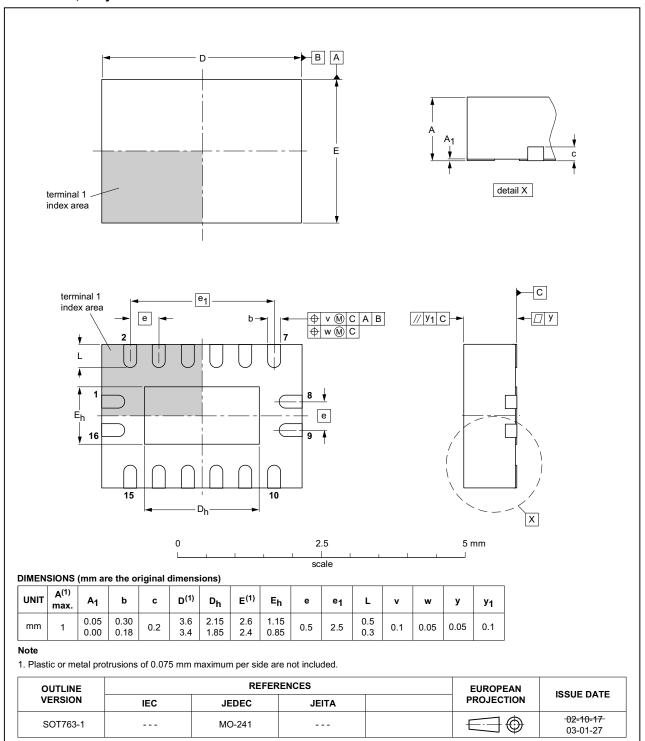


Fig 25. Package outline SOT763-1 (DHVQFN16)

74LV4051 All information provided in this document is subject to legal disclaimers.

8-channel analog multiplexer/demultiplexer

12. Abbreviations

Table 12. Abbreviations

Acronym	Description			
CMOS	mplementary Metal-Oxide Semiconductor			
ESD	ectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			
TTL	Transistor-Transistor Logic			

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74LV4051 v.6	20160317	Product data sheet	-	74LV4051 v.5				
Modifications:	Type number 74LV4051N (SOT38-4) removed.							
74LV4051 v.5	20140917	Product data sheet	-	74LV4051 v.4				
Modifications:	Figure 7: Figure note added for DHVQFN16 package							
74LV4051 v.4	20090810	Product data sheet	-	74LV4051 v.3				
Modifications:	The format of of NXP Semice		redesigned to compl	y with the new identity guidelines				
	 Legal texts ha 	ave been adapted to the ne	ew company name w	here appropriate.				
	Added type notes:	umber 74LV4051BQ (DHV	'QFN16 package)					
74LV4051 v.3	19960623	Product specification	-	74LV4051 v.2				
74LV4051 v.2	19970715	Product specification	-	74LV4051 v.1				

8-channel analog multiplexer/demultiplexer

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LV4051

All information provided in this document is subject to legal disclaimers.