

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

16-bit buffer/line driver; 5 V input/output tolerant; 3-state

Rev. 09 — 18 March 2010 Product data sheet

1. General description

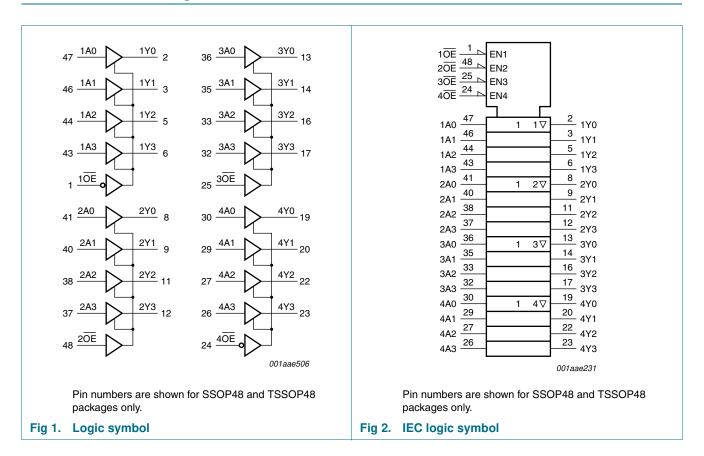
The 74LVC16244A; 74LVCH16244A are 16-bit non-inverting buffer/line drivers with 3-state bus compatible outputs. The device can be used as four 4-bit buffers, two 8-bit buffers or one 16-bit buffer. It features four output enable inputs, $(1\overline{OE} \text{ to } 4\overline{OE})$ each controlling four of the 3-state outputs. A HIGH on $n\overline{OE}$ causes the outputs to assume a high-impedance OFF-state.

Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied to the outputs. These features allow the use of these devices in mixed 3.3 V and 5 V applications.

The 74LVCH16244A bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs.

2. Features and benefits

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Multibyte flow-through standard pin-out architecture
- Low inductance multiple power and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- High-impedance when V_{CC} = 0 V
- All data inputs have bus hold. (74LVCH16244A only)
- Complies with JEDEC standard JESD8-B / JESD36
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from −40 °C to +85 °C and −40 °C to +125 °C



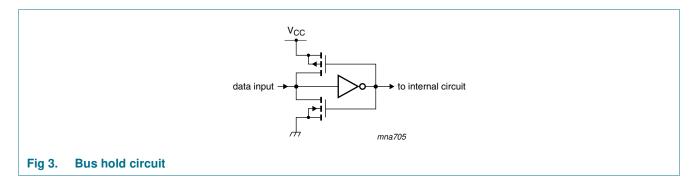
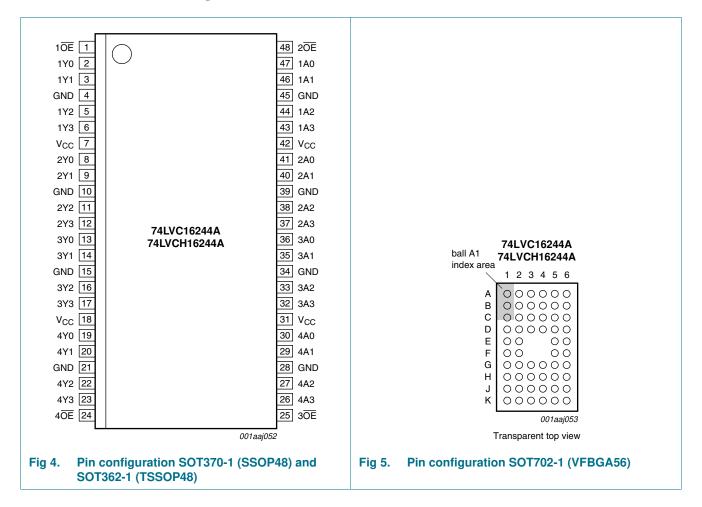
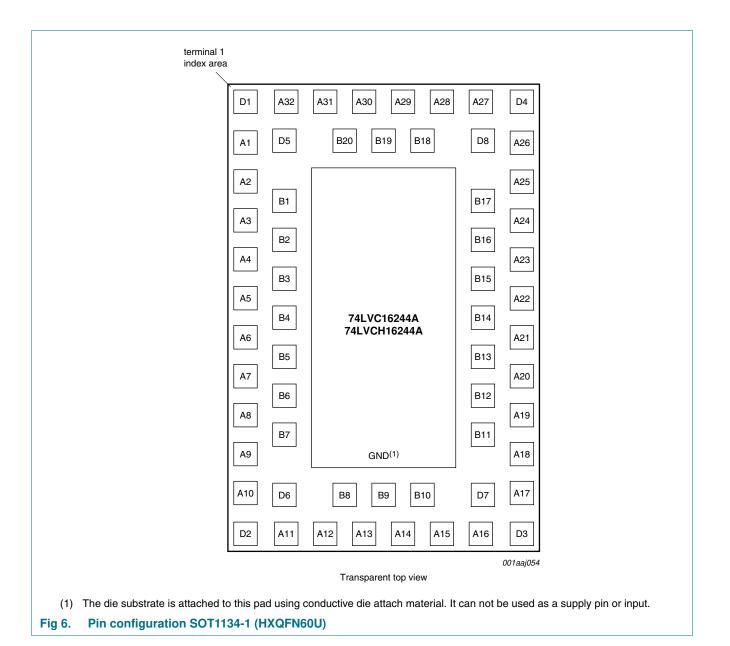

3. Ordering information

Table 1. Ordering information

Type number	Temperature range	Package	Package						
		Name	Description	Version					
74LVC16244ADL	–40 °C to +125 °C	SSOP48	plastic shrink small outline package; 48 leads;	SOT370-1					
74LVCH16244ADL			body width 7.5 mm						
74LVC16244ADGG	–40 °C to +125 °C	TSSOP48	plastic thin shrink small outline package;	SOT362-1					
74LVCH16244ADGG			48 leads; body width 6.1 mm						
74LVC16244AEV	–40 °C to +125 °C	VFBGA56	plastic very thin fine-pitch ball grid array package;	SOT702-1					
74LVCH16244AEV			56 balls; body $4.5 \times 7 \times 0.65$ mm						
74LVC16244ABQ	–40 °C to +125 °C	HXQFN60U	plastic thermal enhanced extremely thin quad flat	SOT1134-1					
74LVCH16244ABQ	_		package; no leads; 60 terminals; UTLP based; body 4 x 6 x 0.5 mm						


4. Functional diagram



5. Pinning information

5.1 Pinning

74LVC LVCH16244A 9

5.2 Pin description

Table 2. Pin description

Symbol	Pin			Description	
	SOT370-1 and SOT362-1	SOT702-1	SOT1134-1		
1 <u>OE</u> , 2 <u>OE</u> , 3OE, 4OE	1, 48, 25, 24	A1, A6, K6, K1	A30, A29, A14, A13	output enable input (active LOW)	
1Y0 to 1Y3	2, 3, 5, 6	B2, B1, C2, C1	B20, A31, D5, D1	data output	
2Y0 to 2Y3	8, 9, 11, 12	D2, D1, E2, E1	A2, B2, B3, A5	data output	
3Y0 to 3Y3	13, 14, 16, 17	F1, F2, G1, G2	A6, B5, B6, A9	data output	
4Y0 to 4Y3	19, 20, 22, 23	H1, H2, J1, J2	D2, D6, A12, B8	data output	
GND	4, 10, 15, 21, 28, 34, 39, 45	B3, B4, D3, D4, G3, G4, J3, J4	A32, A3, A8, A11, A16, A19, A24, A27	ground (0 V)	
V _{CC}	7, 18, 31, 42	C3, C4, H3, H4	A1, A10, A17, A26	supply voltage	
1A0 to 1A3	47, 46, 44, 43	B5, B6, C5, C6	B18, A28, D8, D4	data input	
2A0 to 2A3	41, 40, 38, 37	D5, D6, E5, E6	A25, B16, B15, A22	data input	
3A0 to 3A3	36, 35, 33, 32	F6, F5, G6, G5	A21, B13, B12, A18	data input	
4A0 to 4A3	30, 29, 27, 26	H6, H5, J6, J5	D3, D7, A15, B10	data input	
n.c.	-	A2, A3, A4, A5, K2, K3, K4, K5	A4, A7, A20, A23, B1, B4, B7, B9, B11, B14, B17, B19	not connected	

6. Functional description

Table 3. Function table[1]

Control	Input	Output
nOE	nAn	nYn
L	L	L
L	Н	Н
Н	X	Z

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

		, ,			•
Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	$V_I < 0 V$	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0$ V	-	±50	mA
Vo	output voltage	output HIGH or LOW	[2] -0.5	$V_{CC} + 0.5$	V
		output 3-state	[2] -0.5	+6.5	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		–65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C};$			
		(T)SSOP48 package	[3] _	500	mW
		VFBGA56 package	[4] _	1000	mW
		HXQFN60U package	[4] -	1000	mW

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	maximum speed performance	2.7	-	3.6	V
		functional	1.2	-	3.6	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW	0	-	V_{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 1.2 \text{ V to } 2.7 \text{ V}$	0	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0	-	10	ns/V

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^[3] Above 60 °C the value of Ptot derates linearly with 5.5 mW/K.

^[4] Above 70 °C the value of P_{tot} derates linearly with 1.8 mW/K.

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40 °C	C to +85	°C	-40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input	V _{CC} = 1.2 V		V_{CC}	-	-	V_{CC}	-	V
	voltage	V _{CC} = 2.7 V to 3.6 V		2.0	-	-	2.0	-	V
V_{IL}	LOW-level input	V _{CC} = 1.2 V		-	-	0	-	0	V
	voltage	V _{CC} = 2.7 V to 3.6 V		-	-	8.0	-	0.8	V
V _{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL}							
	voltage	$I_{O} = -100 \ \mu A;$ $V_{CC} = 2.7 \ V \ to \ 3.6 \ V$		V _{CC} – 0.2	V_{CC}	-	$V_{CC}-0.3$	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$		2.2	-	-	2.05	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$		2.4	-	-	2.25	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$		2.2	-	-	2.0	-	V
V_{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}							
	voltage	$I_O = 100 \mu A;$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		-	0	0.20	-	0.3	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$		-	-	0.40	-	0.6	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$		-	-	0.55	-	0.8	V
II	input leakage current	$V_I = 5.5 \text{ V or GND}; V_{CC} = 3.6 \text{ V}$	[2]	-	±0.1	±5	-	±20	μА
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 5.5$ V or GND; $V_{CC} = 3.6$ V	[2][3]	-	±0.1	±5	-	±20	μΑ
I _{OFF}	power-off leakage current	V_I or $V_O = 5.5$ V; $V_{CC} = 0.0$ V		-	±0.1	±10	-	±20	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 3.6 \text{ V}$		-	0.1	20	-	80	μА
ΔI_{CC}	additional supply current	per input pin; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$; $V_{CC} = 2.7 \text{ V}$ to 3.6 V		-	5	500	-	5000	μΑ
C _I	input capacitance	$V_{CC} = 0 \text{ V to } 3.6 \text{ V};$ $V_{I} = \text{GND to } V_{CC}$		-	5.0	-	-	-	pF
I _{BHL}	bus hold LOW current	$V_{CC} = 3.0 \text{ V}; V_I = 0.8 \text{ V}$	[4][5]	75	-	-	60	-	μА
I _{BHH}	bus hold HIGH current	$V_{CC} = 3.0 \text{ V}; V_I = 2.0 \text{ V}$	[4][5]	- 75	-	-	-60	-	μА
I _{BHLO}	bus hold LOW overdrive current	$V_{CC} = 3.6 \text{ V}$	[4][6]	500	-	-	500	-	μА

16-bit buffer/line driver; 5 V input/output tolerant; 3-state

Table 6. Static characteristics ... continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	s –40 °C to +85 °C			°C	-40 °C to -	Unit	
				Min	Typ[1]	Max	Min	Max	
I _{BHHO}	bus hold HIGH overdrive current	$V_{CC} = 3.6 \text{ V}$	[4][6]	-500	-	-	-500	-	μΑ

- [1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.
- The bus hold circuit is switched off when $V_1 > V_{CC}$ allowing 5.5 V on the input terminal.
- For I/O ports the parameter I_{OZ} includes the input leakage current.
- Valid for data inputs of bus hold parts only (74LVCH16244A). Note that control inputs do not have a bus hold circuit.
- The specified sustaining current at the data input holds the input below the specified V_I level.
- The specified overdrive current at the data input forces the data input to the opposite input state.

10. Dynamic characteristics

Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	
t _{pd}	propagation	nAn to nYn; see Figure 7	[1]						
delay	delay	V _{CC} = 1.2 V		-	11.0	-	-	-	ns
		V _{CC} = 2.7 V		1.0	-	4.7	1.0	6.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]	1.1	3.0	4.1	1.1	5.5	ns
t _{en}	enable time	nOE to nYn; see Figure 8	[1]						
		V _{CC} = 1.2 V		-	15.0	-	-	-	ns
		V _{CC} = 2.7 V		1.0	-	5.8	1.0	7.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]	1.0	3.5	4.6	1.0	6.0	ns
t _{dis}	disable time	nOE to nYn; see Figure 8	[1]						
		V _{CC} = 1.2 V		-	10.0	-	-	-	ns
		V _{CC} = 2.7 V		1.0	-	6.2	1.0	8.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]	1.8	3.7	5.2	1.8	6.5	ns

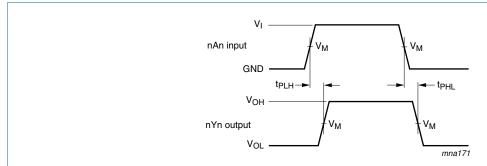
Table 7. Dynamic characteristics ... continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

Symbol	Parameter	Conditions	–40 °C to +85 °C		-40 °C to	Unit		
			Min	Тур	Max	Min	Max	
C _{PD} power dissipation capacitance	1	per buffer; $V_I = GND$ to V_{CC} ; $V_{CC} = 3.3 \text{ V}$		'			•	
	•	outputs enabled	-	12	-	-	-	pF
	Сараспапсе	outputs disabled	-	4.0	-	-	-	pF

- [1] t_{pd} is the same as t_{PLH} and t_{PHL} .
 - t_{en} is the same as t_{PZL} and t_{PZH} .
 - t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [2] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 3.3 V.
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

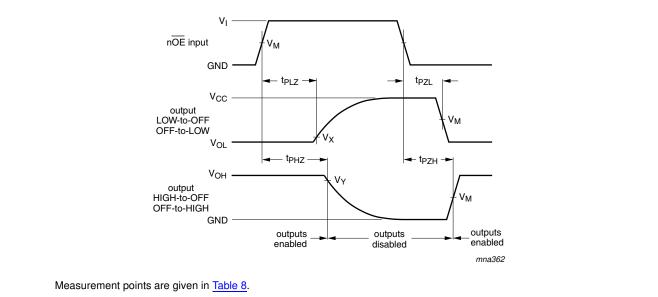
f_i = input frequency in MHz; f_o = output frequency in MHz


C_L = output load capacitance in pF

V_{CC} = supply voltage in Volts

N = number of inputs switching

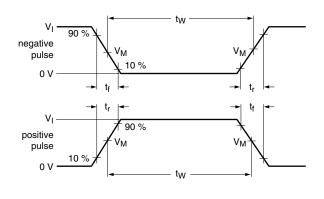
 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.


11. Waveforms

Measurement points are given in Table 8.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 7. The input (nAn) to output (nYn) propagation delays



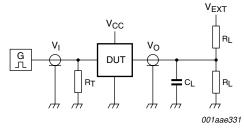

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 8. 3-state enable and disable times.

Table 8. Measurement points

Supply voltage	Input		Output				
V _{CC}	VI	V _M	V _M	V _X	V _Y		
1.2 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{\text{CC}}$	$V_{OL} + 0.1 V$	V _{OH} – 0.1 V		
2.7 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V		
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V	$V_{OL} + 0.3 V$	V _{OH} – 0.3 V		

Test data is given in Table 9.

Definitions for test circuit:

 R_L = Load resistance.

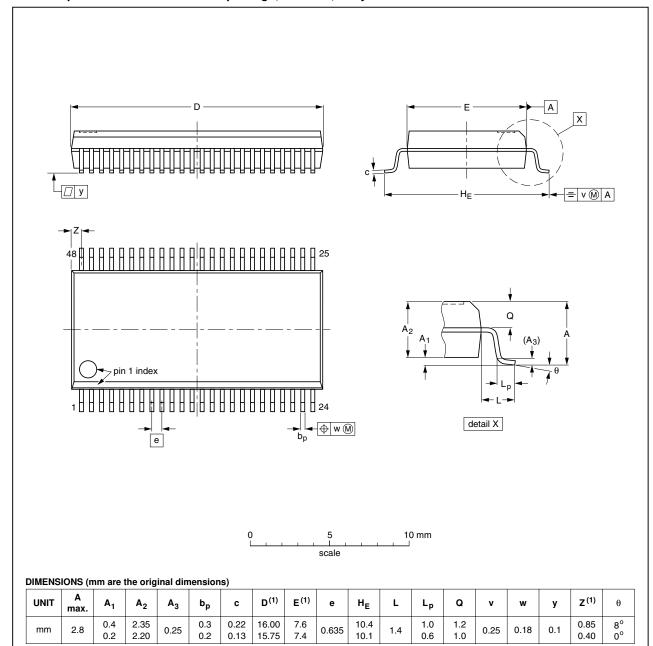
C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig 9. Load circuit for measuring switching times

Table 9. Test data


Supply voltage	voltage Input		Load	Load		V _{EXT}		
	VI	t _r , t _f	CL	C _L R _L t		t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
1.2 V	V_{CC}	≤ 2.5 ns	50 pF	$500 \Omega^{[1]}$	open	$2\times V_{CC}$	GND	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	$500~\Omega$	open	$2\times V_{CC}$	GND	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	$500~\Omega$	open	$2\times V_{CC}$	GND	

[1] The circuit performs better when $R_L = 1 \text{ k}\Omega$.

12. Package outline

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

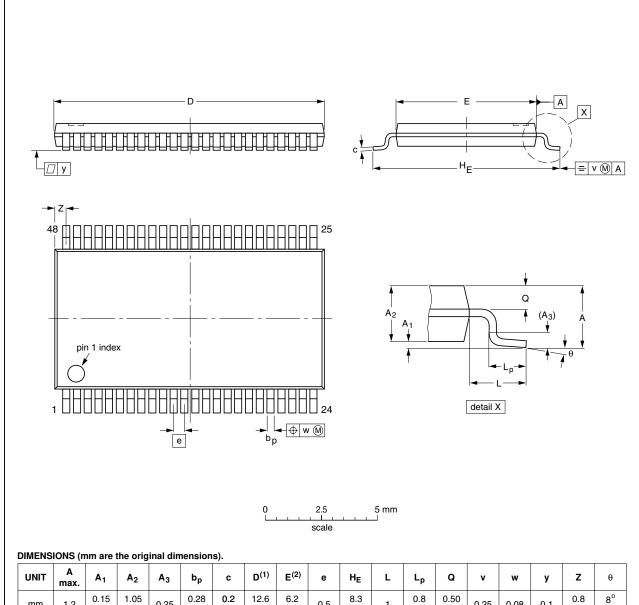

OUTLINE VERSION		REFER	EUROPEAN	ICCUE DATE		
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT370-1		MO-118				99-12-27 03-02-19

Fig 10. Package outline SOT370-1 (SSOP48)

74LVC_LVCH16244A_9 All information provided in this document is subject to legal disclaimers.

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	12.6 12.4	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.8 0.4	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT362-1		MO-153				99-12-27 03-02-19	

Fig 11. Package outline SOT362-1 (TSSOP48)

74LVC_LVCH16244A_9

All information provided in this document is subject to legal disclaimers.

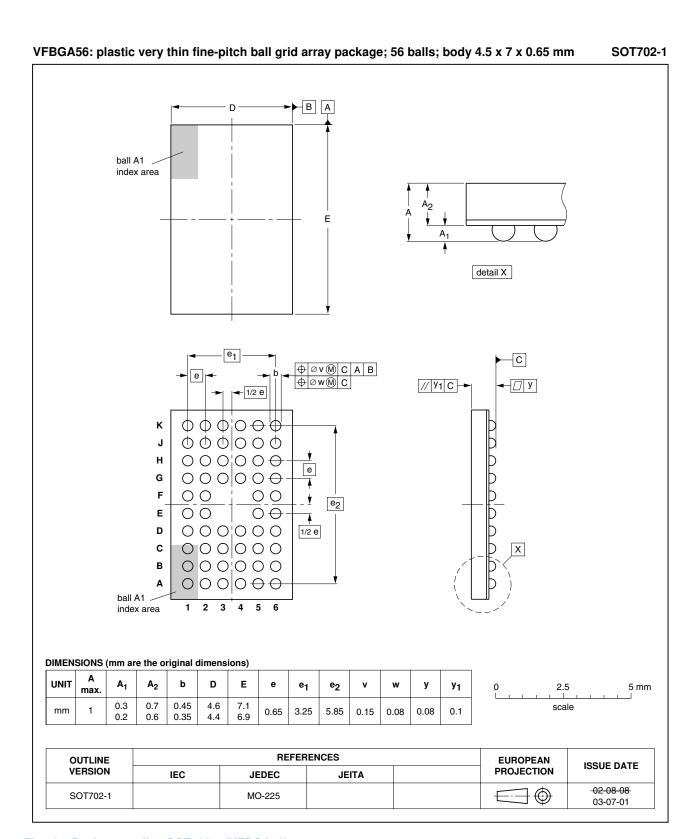


Fig 12. Package outline SOT702-1 (VFBGA56)

74LVC_LVCH16244A_9

All information provided in this document is subject to legal disclaimers.

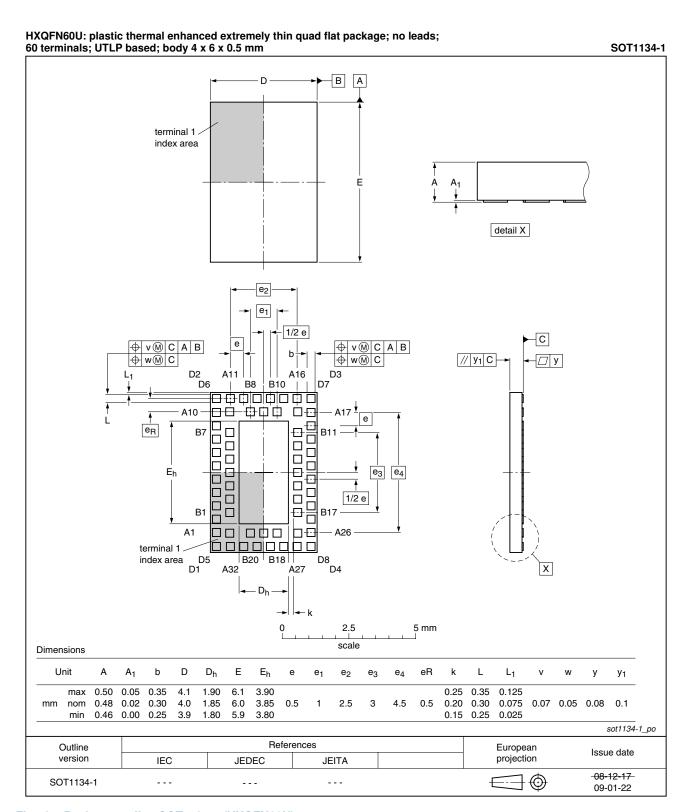


Fig 13. Package outline SOT1134-1 (HXQFN60U)

74LVC_LVCH16244A_9

All information provided in this document is subject to legal disclaimers.

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
Document 15	ricicase date	Data Silect Status	Change notice	ouperseucs
74LVC_LVCH16244A_9	20100318	Product data sheet	-	74LVC_LVCH16244A_8
Modifications:		ABQ and 74LVCH16244A SOT1134-1) package.	BQ changed from H	UQFN60U (SOT1025-1) to
74LVC_LVCH16244A_8	20081117	Product data sheet	-	74LVC_LVCH16244A_7
74LVC_LVCH16244A_7	20031208	Product specification	-	74LVC_LVCH16244A_6
74LVC_LVCH16244A_6	20030130	Product specification	-	74LVC_LVCH16244A_5
74LVC_LVCH16244A_5	20021030	Product specification	-	74LVC_H16244A_4
74LVC_H16244A_4	19971028	Product specification	-	74LVC16244A_ 74LVCH16244A_3
74LVC16244A_ 74LVCH16244A_3	19971028	Product specification	-	74LVC16244A_2
74LVC16244A_2	19970630	Product specification	-	74LVC16244A_1
74LVC16244A_1	-	-	-	-

16-bit buffer/line driver; 5 V input/output tolerant; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVC_LVCH16244A_9

17 of 19

16-bit buffer/line driver; 5 V input/output tolerant; 3-state

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

16-bit buffer/line driver; 5 V input/output tolerant; 3-state

17. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Functional diagram 2
5	Pinning information
5.1	Pinning
5.2	Pin description 5
6	Functional description 5
7	Limiting values 6
8	Recommended operating conditions 6
9	Static characteristics 7
10	Dynamic characteristics 8
11	Waveforms
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks17
16	Contact information
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.