imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

IDT74LVC16244A

3.3V CMOS 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O

FEATURES:

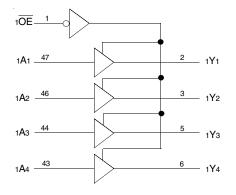
- Typical tSK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- Supports hot insertion
- Available in SSOP and TSSOP packages

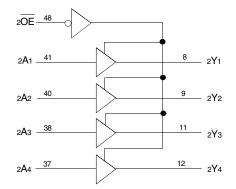
DRIVE FEATURES:

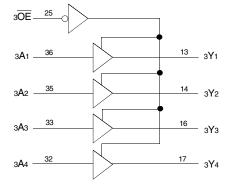
- High Output Drivers: ±24mA
- Reduced system switching noise

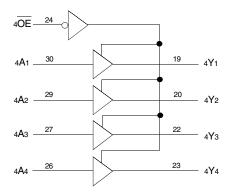
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems


FUNCTIONAL BLOCK DIAGRAM


DESCRIPTION:


The LVC16244A 16-bit buffer/driver is built using advanced dual metal CMOS technology. The LVC16244A is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. This device provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.


All pins of this 16-bit buffer/driver can be driven from either 3.3V or 5V devices. This feature allows the use of the device as a translator in a mixed 3.3V/5V supply system.

The LVC16244A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.



IDT and the IDT logo is a registered trademark of Integrated Device Technology, Inc.

JULY 2015

PIN CONFIGURATION

TOP VIEW

INDUSTRIAL TEMPERATURERANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	–0.5 to +6.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	–50 to +50	mA
Ік Іок	Continuous Clamp Current, Vi < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
xAx	Data Inputs	
x Y x 3-State Outputs		
xŌĒ	3-State Output Enable Inputs (Active LOW)	

FUNCTION TABLE (EACH 4-BIT BUFFER)(1)

Inp	Outputs	
xOE	хАх	хҮх
L	L	L
L	Н	Н
Н	Х	Z

NOTES:

1. H = HIGH Voltage Level

X = Don't Care

L = LOW Voltage Level

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40 °C to +85 °C

Symbol	Parameter	Test 0	Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	-	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	-	0.8	
Ін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	-	±5	μA
lı∟							
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	-	±10	μA
lozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo \leq 5.5V		-	-	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		-	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	-	-	10	μA
Іссн Іссz			$3.6 \le VIN \le 5.5V^{(2)}$			10	
Δ lcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		-	-	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Іон = -0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = - 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	1	2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	—	
Vol	OutputLOWVoltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IoL = 6mA	—	0.4	
			IoL = 12mA	—	0.7	
		Vcc = 2.7V	IoL = 12mA	—	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

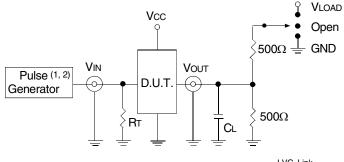
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Buffer/Driver Outputs enabled	CL = 0pF, f = 10Mhz	34	pF
Cpd	Power Dissipation Capacitance per Buffer/Driver Outputs disabled		3	

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc =	: 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay	—	4.7	1.1	4.1	ns
1PHL	xAx to xYx					
tрzн	Output Enable Time	_	5.8	1	4.6	ns
tPZL	xOE to xYx					
tPHZ	Output Disable Time	_	6.2	1.8	5.8	ns
tPLZ	xOE to xYx					
tsk(o)	Output Skew ⁽²⁾	—	—	—	1	ns

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = - 40°C to + 85°C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVC16244A 3.3V CMOS16-BIT BUFFER/DRIVER WITH3-STATE OUTPUTS

INDUSTRIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

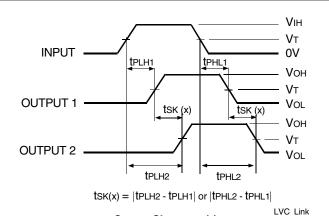
Symbol	$Vcc^{(1)}=3.3V\pm0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

LVC Link

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

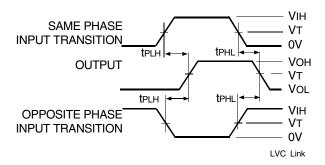

 $\mathsf{R} \mathsf{T}$ = Termination resistance: should be equal to $\mathsf{Z} \mathsf{O} \mathsf{U} \mathsf{T}$ of the Pulse Generator.

NOTES:

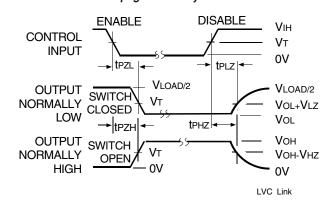
1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

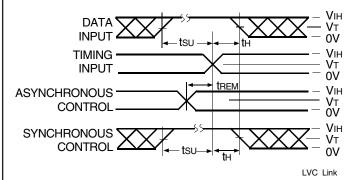


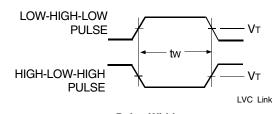
Output Skew - tsk(x)


NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

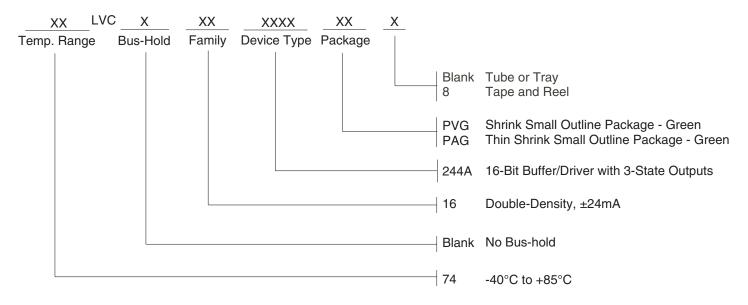
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

Pulse Width

ORDERINGINFORMATION

DATASHEET DOCUMENT HISTORY

07/28/2015 Pg. 1,2,6 Updated the ordering information by removing PF, PFG, non RoHS parts and adding Tape and Reel information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com