

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS **18-BIT UNIVERSAL BUS** TRANSCEIVER WITH 3 STATE OUTPUTS. **5 VOLT TOLERANT I/O**

IDT74LVC16601A OBSOLETE PART

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4μ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SSOP package

DRIVE FEATURES:

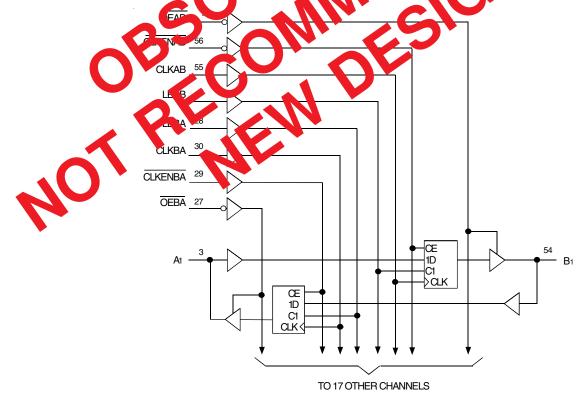
- High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication system.

DESCRIPTION:

The LVC16601A 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. This 18-bit universal bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

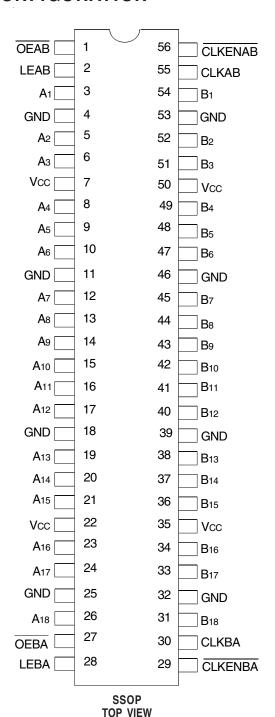

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs.

For A-to-B data flow, the slevice operates in the transparent mode when LEAB is high. When Lea his low, the A data is the ed. CLK B is held at a high or low logic evol. If LL AB is low, the \triangle bis data as stored in the latch/flip-flop on the L. W. or UGH transition of CHAR. Carput enable $\overline{\text{OEAB}}$ is active low. When OEAB is low, the output are active. When OEAB is high, ocutions to the high-in peda, ce state. Data flow for B to A is similar of the of A to B but use of Eb. LE. A, CLKBA and CLKENBA.

All pens can be driven from either 3.3V or 5V devices. This feature allows the use of this revice as a translator in a mixed 3.3V/5V supply system.

Abs been designed with a ±24mA output driver. This e or driving a moderate heavy load while maintaining

FUNCTIONAL BLOCK D



IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2015

PIN CONFIGURATION

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
ŌĒĀB	A-to-B Output Enable Input (Active LOW)
ŌĒBĀ	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs
Bx	B-to-A Data Inputs or A-to-B 3-State Outputs
CLKENAB	A-to-B Clock Enable Input (Active LOW)
CLKENBA	B-to-A Clock Enable Input (Active LOW)

FUNCTION TABLE(1,2)

	Inputs				
CLKENAB	OEAB	LEAB	CLKAB	Ax	Вх
Х	Н	Х	Х	Х	Z
Х	L	Н	Х	L	L
Х	L	Н	Х	Н	Н
Н	L	L	Х	Х	B ⁽³⁾
L	L	L	1	L	L
L	L	L	1	Н	Н
L	L	L	L	Х	B ⁽³⁾
L	L	L	Н	Х	B ⁽⁴⁾

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH transition
- 2. A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\text{OEBA}}$, LEBA, CLKBA, and $\overline{\text{CLKENBA}}$
- 3. Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Tes	st Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		T -	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	Vi = 0 to 5.5V	-	_	±5	μΑ
lıL							
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	_	±10	μΑ
lozL	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or VO \le 5$.5V	_	_	±50	μΑ
Vık	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V			100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	_	10	μΑ
Iссн Iссz			2 6 < V/N < 5 5 V(2)	-	-	10	
Δlcc	Quiescent Power Supply Current Variation	$3.6 \le V \text{IN} \le 5.5 V^{(2)}$ One input at Vcc - 0.6V, other inputs at Vcc or GND		_		500	μΑ

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestCon	ditions ⁽¹⁾	Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = -6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V]	2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

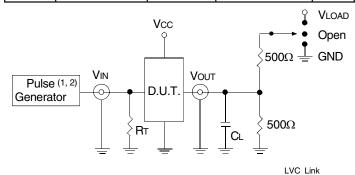
NOTE:

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled			

SWITCHING CHARACTERISTICS(1)


			Vcc =	: 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay		_	5.4	_	4.6	ns
t PHL	Ax to Bx or Bx to Ax						
t PLH	Propagation Delay		_	6.2	_	5.2	ns
t PHL	LEBA to Ax, LEAB to Bx						
t PLH	Propagation Delay		_	6.3	_	5.3	ns
t PHL	CLKBA to Ax, CLKAB to Bx						
tpzh	Output Enable Time		_	6.8	_	5.6	ns
t PZL	OEBA to Ax, OEAB to Bx						
t PHZ	Output Disable Time	Output Disable Time		6	_	5.2	ns
tPLZ	OEBA to Ax, OEAB to Bx						
tsu	Set-up Time HIGH or LOW, Ax to CLKAB, Bx to CLKBA		1.5	_	1.5	_	ns
tH	Hold Time HIGH or LOW, Ax to CLKAB, Bx to CLKBA		0.8	_	0.8	_	ns
tsu	Set-up Time HIGH or LOW	Clock LOW	1	_	1	_	ns
	Ax to LEAB, Bx to LEBA	Clock HIGH	1	_	1	_	
tsu	Set-up Time, CLKENAB to CLKA	3	2.1	_	2.1	_	ns
tsu	Set-up Time, CLKENBA to CLKB/	A	2.1	_	2.1	_	ns
tH	Hold Time HIGH or LOW, Ax afte	Hold Time HIGH or LOW, Ax after LEAB, Bx after LEBA		_	1.8	_	ns
t H	Hold Time, CLKENAB after CLKAB		0.5	_	0.5	_	ns
t H	Hold Time, CLKENBA after CLKBA		0.5	_	0.5	_	ns
tw	LEAB or LEBA Pulse Width HIGH		3	_	3	_	ns
tw	CLKAB or CLKBA Pulse Width H	IGH or LOW	3	_	3	_	ns
tsk(o)	Output Skew ⁽²⁾		T —	_	_	500	ps

NOTES:

- 1. See TEST CIRCUITS AND WAVEFORMS. $T_A = -40$ °C to + 85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

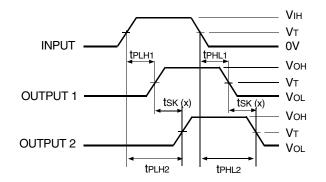
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.


RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

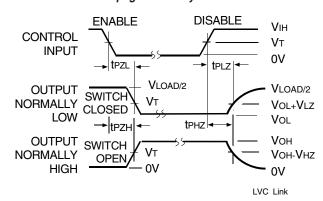
NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

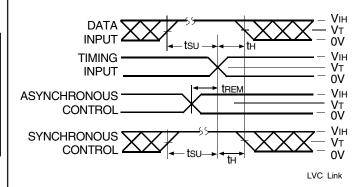
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|

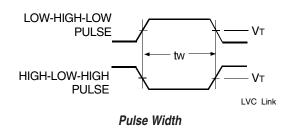

Output Skew - tsκ(x)

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

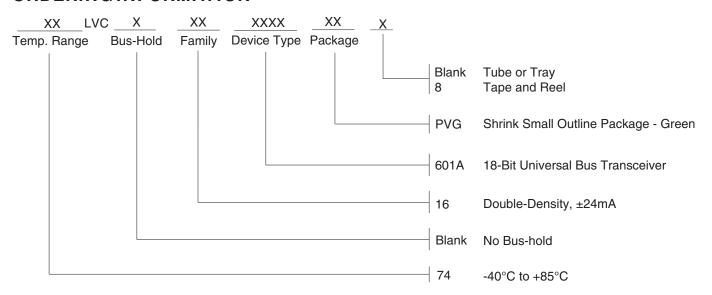
VIH SAME PHASE VT INPUT TRANSITION 0V tPLH **t**PHL VOH **OUTPUT** VT VOL **t**PLH †PHI VIH OPPOSITE PHASE VT INPUT TRANSITION 0V LVC Link


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

LVC Link

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

07/28/2015 Pg. 6 Updated the ordering information by removing non RoHS parts and adding Tape and Reel information. 07/31/2015 Pg. 1-6 PDN# CQ-14-05 issued. See IDT.com for PDN specifics.

09/09/2015 Pg. 1-6 Datasheet changed to Obsolete Status.

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 **for SALES:** 800-345-7015 or 408-284-8200 fax: 408-284-2775

for Tech Support: logichelp@idt.com

www.idt.com