

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74LVC1G123

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Rev. 5 — 14 June 2016

Product data sheet

1. General description

The 74LVC1G123 is a single retriggerable monostable multivibrator with Schmitt trigger inputs. Output pulse width is controlled by three methods:

- 1. The basic pulse is programmed by selection of an external resistor (R_{EXT}) and capacitor (C_{EXT}).
- 2. Once triggered, the basic output pulse width may be extended by retriggering the gated active LOW-going edge input (A) or the active HIGH-going edge input (B). By repeating this process, the output pulse period (Q = HIGH) can be made as long as desired. Alternatively an output delay can be terminated at any time by a LOW-going edge on input CLR, which also inhibits the triggering.
- 3. An internal connection from $\overline{\text{CLR}}$ to the input gates makes it possible to trigger the circuit by a HIGH-going signal at input $\overline{\text{CLR}}$.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 V and 5 V environment. Schmitt trigger inputs, makes the circuit highly tolerant to slower input rise and fall times.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- High noise immunity
- \pm 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- DC triggered from active HIGH or active LOW inputs
- Retriggerable for very long pulses up to 100 % duty factor
- Direct reset terminates output pulse
- Schmitt trigger on all inputs
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - ◆ JESD8-5 (2.3 V to 2.7 V)
 - ◆ JESD8-B/JESD36 (2.7 V to 3.6 V)
- Power-on-reset on outputs
- Latch-up performance exceeds 100 mA
- Direct interface with TTL levels

Single retriggerable monostable multivibrator; Schmitt trigger inputs

- Inputs accept voltages up to 5.5 V
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - ◆ MM JESD22-A115-A exceeds 200 V
 - ◆ CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

Type number	Package	Package						
	Temperature range	Name	Description	Version				
74LVC1G123DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2				
74LVC1G123DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1				
74LVC1G123GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1				
74LVC1G123GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1 \times 0.5 mm	SOT1089				
74LVC1G123GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3 \times 2 \times 0.5$ mm	SOT996-2				
74LVC1G123GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.2 \times 1.0 \times 0.35$ mm	SOT1116				
74LVC1G123GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1.0 \times 0.35 mm	SOT1203				

4. Marking

Table 2. Marking codes

Type number	Marking code[1]
74LVC1G123DP	Y3
74LVC1G123DC	Y3
74LVC1G123GT	Y3
74LVC1G123GF	Y3
74LVC1G123GD	Y3
74LVC1G123GN	Y3
74LVC1G123GS	Y3

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

5. Functional diagram

Single retriggerable monostable multivibrator; Schmitt trigger inputs

6. Pinning information

6.1 Pinning

Single retriggerable monostable multivibrator; Schmitt trigger inputs

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
Ā	1	negative-edge triggered input
В	2	positive-edge triggered input
CLR	3	direct reset LOW and positive-edge triggered input
GND	4	ground (0 V)
Q	5	active HIGH output
CEXT	6	external capacitor connection
REXT/CEXT	7	external resistor and capacitor connection
V _{CC}	8	supply voltage

7. Functional description

Table 4. Function table[1]

Input			Output
CLR	Ā	В	Q
L	X	X	L
X	Н	X	<u>L[2]</u>
X	X	L	<u>L[2]</u>
Н	L	\uparrow	Л
Н	\	Н	Л
\uparrow	L	Н	Л

[1] $H = HIGH \text{ voltage level}$; $L = LOW \text{ voltage level}$; $X = don't care$; $\uparrow =$	= LOW-to-HIGH transition; \downarrow = HIGH-to-LOW transition;
--	--

= one HIGH level output pulse; = one LOW level output pulse.

^[2] If the monostable was triggered before this condition was established, the pulse continues as programmed.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
Vo	output voltage	Active mode	<u>[1]</u>	-0.5	V _{CC} + 0.5	V
		Power-down mode	[1][2]	-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
I _{OK}	output clamping current	$V_O < 0 \text{ V or } V_O > V_{CC}$		-	±50	mA
lo	output current	$V_O = 0 \text{ V to } V_{CC}$		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3]	-	300	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	1	ms/V

^[2] When $V_{CC} = 0 \text{ V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

^[3] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C[1]					
V _{OH}	HIGH-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_{O} = -100 \mu A$; $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	V _{CC} - 0.1	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-		V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-		V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_O = 100 \mu A$; $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		$I_O = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.4	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}; V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	±2	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±2	μА
I _{CC}	supply current	V _I = 5.5 V or GND;				
		Quiescent; $V_{CC} = 1.65 \text{ V}$ to 5.5 V; $I_{O} = 0 \text{ A}$	-	0.1	10	μΑ
		Active state; R _{EXT} /C _{EXT} = 0.5V _{CC}				
		V _{CC} = 1.65 V	-	-	80	μΑ
		V _{CC} = 2.3 V	-	-	130	μΑ
		V _{CC} = 3 V	-	-	240	μΑ
		V _{CC} = 4.5 V	-	-	400	μΑ
		V _{CC} = 5.5 V	-	-	650	μΑ
Cı	input capacitance		-	2.0	-	pF

Single retriggerable monostable multivibrator; Schmitt trigger inputs

 Table 7.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +125 °C					
V _{OH}	HIGH-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_{O} = -100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	V _{CC} - 0.1	-	-	٧
		$I_{O} = -4 \text{ mA}$; $V_{CC} = 1.65 \text{ V}$	1.2	V _{CC} - 0.1	٧	
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_O = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_O = 100 \mu A$; $V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.3	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.4	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}; V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	±10	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±10	μА
Icc	supply current	V _I = 5.5 V or GND;				
		Quiescent; V _{CC} = 1.65 V to 5.5 V; I _O = 0 A	-	-	20	μΑ
		Active state; $R_{EXT}/C_{EXT} = 0.5V_{CC}$				
		V _{CC} = 1.65 V	-	-	80	μΑ
		V _{CC} = 2.3 V	-	-	130	μΑ
		V _{CC} = 3 V	-	-	240	μΑ
		V _{CC} = 4.5 V	-	-	400	μΑ
		V _{CC} = 5.5 V	-	-	650	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Table 8. Transfer characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V_{T+}	positive-going threshold voltage	A, B and CLR input; see Figure 6						
		V _{CC} = 1.65 V to 1.95 V	0.72	0.98	1.22	0.71	1.22	V
		V _{CC} = 2.3 V to 2.7 V	0.97	1.26	1.52	0.97	1.52	٧
		V _{CC} = 3.0 V to 3.6 V	1.20	1.58	1.90	1.20	1.90	٧
		V _{CC} = 4.5 V to 5.5 V	1.74	2.27	2.75	1.74	2.78	٧
V_{T-}	negative-going threshold voltage	A, B and CLR input; see Figure 6						
		V _{CC} = 1.65 V to 1.95 V	0.56	0.81	1.04	0.56	1.04	٧
		V _{CC} = 2.3 V to 2.7 V	0.83	1.09	1.33	0.82	1.33	٧
		V _{CC} = 3.0 V to 3.6 V	1.08	1.40	1.70	1.08	1.72	٧
		V _{CC} = 4.5 V to 5.5 V	1.61	2.07	2.53	1.61	2.57	٧
V _H	hysteresis voltage	\overline{A} , B and \overline{CLR} input; $(V_{T+} - V_{T-})$; see Figure 6						
		V _{CC} = 1.65 V to 1.95 V	61	170	295	54	295	mV
		V _{CC} = 2.3 V to 2.7 V	41	174	304	41	304	mV
		V _{CC} = 3.0 V to 3.6 V	40	183	319	40	319	mV
		V _{CC} = 4.5 V to 5.5 V	32	199	363	26	363	mV

^[1] All typical values are measured at $T_{amb} = 25 \, ^{\circ}C$

10.1 Waveform transfer characteristics

Single retriggerable monostable multivibrator; Schmitt trigger inputs

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18.

Parameter	Conditions	-40	°C to +8	5 °C	-40 °C t	o +125 °C	Unit
		Min	Typ[1]	Max	Min	Max	
propagation	\overline{A} , B to Q; see Figure 7						
delay	$C_L = 15 pF;$						
	V _{CC} = 1.65 V to 1.95 V	2.5	7.1	16.3	2.5	17.6	ns
	V _{CC} = 2.3 V to 2.7 V	1.9	-	10.3	1.9	11.2	ns
	V _{CC} = 2.7 V	1.9	-	8.5	1.9	9.3	ns
	V _{CC} = 3.0 V to 3.6 V	1.5	-	7.6	1.5	8.3	ns
	V _{CC} = 4.5 V to 5.5 V	1.2	-	5.3	1.2	5.8	ns
	$C_L = 30 \text{ pF or } C_L = 50 \text{ pF}$						
	V _{CC} = 1.65 V to 1.95 V	2.9	7.8	17.6	2.9	19.0	ns
	V _{CC} = 2.3 V to 2.7 V	2.2	-	11.3	2.2	12.3	ns
	V _{CC} = 2.7 V	2.7	-	10.5	2.7	11.4	ns
	V _{CC} = 3.0 V to 3.6 V	2.0	-	9.5	2.0	10.3	ns
	V _{CC} = 4.5 V to 5.5 V	1.5	-	6.7	1.5	7.2	ns
	CLR to Q; see Figure 7						
	$C_L = 15 pF;$						
	V _{CC} = 1.65 V to 1.95 V	3.0	6.9	16.2	3.0	17.4	ns
	V _{CC} = 2.3 V to 2.7 V	2.2	-	9.6	2.2	10.5	ns
	V _{CC} = 2.7 V	2.2	-	8.2	2.2	8.9	ns
	V _{CC} = 3.0 V to 3.6 V	2.0	-	7.3	2.0	8.0	ns
	V _{CC} = 4.5 V to 5.5 V	1.5	-	5.1	1.5	5.5	ns
	$C_L = 30 \text{ pF or } C_L = 50 \text{ pF}$						
	V _{CC} = 1.65 V to 1.95 V	3.3	7.5	17.2	3.8	18.6	ns
	V _{CC} = 2.3 V to 2.7 V	2.5	-	10.3	2.0	11.2	ns
	V _{CC} = 2.7 V	2.8	-	9.3	2.8	10.2	ns
	V _{CC} = 3.0 V to 3.6 V	1.5	-	8.4	1.5	9.2	ns
	V _{CC} = 4.5 V to 5.5 V	1.5	-	6.0	1.5	6.6	ns
		propagation delay	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	propagation delay A, B to Q; see Figure 7 CL = 15 pF; V _{CC} = 1.65 V to 1.95 V 1.9 V _{CC} = 2.3 V to 2.7 V 1.9 V _{CC} = 3.0 V to 3.6 V 1.5 CL = 30 pF or CL = 50 pF V _{CC} = 3.0 V to 3.6 V 2.7 V _{CC} = 2.7 V 2.9 7.8 V _{CC} = 2.3 V to 2.7 V 2.9 7.8 V _{CC} = 2.3 V to 1.95 V 2.9 7.8 V _{CC} = 2.3 V to 2.7 V 2.0	Min Typt! Max Propagation delay Ā, B to Q; see Figure 7 [2] Max C _L = 15 pF; 2.5 7.1 16.3 V _{CC} = 1.65 V to 1.95 V 1.9 - 10.3 V _{CC} = 2.7 V 1.9 - 8.5 V _{CC} = 4.5 V to 5.5 V 1.2 - 5.3 C _L = 30 pF or C _L = 50 pF V _{CC} = 1.65 V to 1.95 V 2.9 7.8 17.6 V _{CC} = 2.3 V to 2.7 V 2.2 - 11.3 V _{CC} = 2.3 V to 3.6 V 2.0 - 9.5 V _{CC} = 4.5 V to 5.5 V 1.5 - 6.7 C _L = 15 pF; V _{CC} = 1.65 V to 1.95 V 3.0 6.9 16.2 V _{CC} = 2.3 V to 2.7 V 2.2 - 8.2 V _{CC} = 3.0 V to 3.6 V 2.0 - 7.3 V _{CC} = 4.5 V to 5.5 V 1.5 - 5.1 C _L = 30 pF or C _L = 50 pF V _{CC} = 2.3 V to 2.7 V 2.2 - 8.2 V _{CC} = 2.3 V to 2.7 V 2.5 - 10.	Min Typ[1] Max Min Min	Min Typ ¹ Max Min Max

Single retriggerable monostable multivibrator; Schmitt trigger inputs

 Table 9.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C t	Unit	
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation	CLR to Q (trigger); see Figure 7						
	delay	$C_L = 15 pF;$						
		V _{CC} = 1.65 V to 1.95 V	2.7	7.6	17.4	2.7	18.9	ns
		V _{CC} = 2.3 V to 2.7 V	2.1	-	11.0	2.1	12.0	ns
		V _{CC} = 2.7 V	2.1	-	9.2	2.1	10.0	ns
		V _{CC} = 3.0 V to 3.6 V	1.7	-	8.2	1.7	8.9	ns
		V _{CC} = 4.5 V to 5.5 V	1.4	-	5.9	1.4	6.4	ns
		$C_L = 30 \text{ pF or } C_L = 50 \text{ pF}$						
		V _{CC} = 1.65 V to 1.95 V	3.1	8.3	18.8	3.3	20.3	ns
		V _{CC} = 2.3 V to 2.7 V	2.5	-	12.0	2.5	13.1	ns
		V _{CC} = 2.7 V	2.8	-	11.1	2.8	12.1	ns
		V _{CC} = 3.0 V to 3.6 V	2.0	-	10.1	2.0	11.0	ns
		V _{CC} = 4.5 V to 5.5 V	1.5	-	7.1	1.5	7.7	ns
t _W	pulse width	input A LOW; B HIGH; see Figure 7 and Figure 8						
		V _{CC} = 1.65 V to 1.95 V	8.0	-	-	8.0	-	ns
		V _{CC} = 2.3 V to 2.7 V	4.0	-	-	4.0	-	ns
		V _{CC} = 2.7 V	3.0	-	-	3.0	-	ns
		V _{CC} = 3.0 V to 3.6 V	3.0	-	-	3.0	-	ns
		V _{CC} = 4.5 V to 5.5 V	2.5	-	-	2.5	-	ns
		input CLR LOW; see Figure 7 and Figure 9						
		V _{CC} = 1.65 V to 1.95 V	8.0	-	-	8.0	-	ns
		V _{CC} = 2.3 V to 2.7 V	4.0	-	-	4.0	-	ns
		V _{CC} = 2.7 V	3.0	-	-	3.0	-	ns
		V _{CC} = 3.0 V to 3.6 V	3.0	-	-	3.0	-	ns
		V _{CC} = 4.5 V to 5.5 V	2.5	-	-	2.5	-	ns
	1	L				1	1	

Single retriggerable monostable multivibrator; Schmitt trigger inputs

 Table 9.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18.

Symbol	Parameter	Conditions		-40 °C to +85 °C			-40 °C to +125 °C		Unit
					Typ[1]	Max	Min	Max	1
t _W	pulse width	output Q HIGH; see Figure 7, Figure 8 and Figure 9; $R_{EXT} = 10 \text{ k}\Omega$	[3]						
		C _{EXT} = 100 pF							
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-	1.4	2.2	_	2.2	μS
		V _{CC} = 2.3 V to 2.7 V		_	1.3	1.8	_	1.8	μS
		V _{CC} = 2.7 V		-	1.2	1.8	_	1.8	μS
		V _{CC} = 3.0 V to 3.6 V		-	1.2	1.8	-	1.8	μS
		V _{CC} = 4.5 V to 5.5 V		-	1.2	1.8	_	1.8	μS
		C _{EXT} = 0.01 μF	[3]						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-	100	110	_	110	μS
		V _{CC} = 2.3 V to 2.7 V		-	100	110	-	110	μS
		V _{CC} = 2.7 V		-	100	110	-	110	μS
		V _{CC} = 3.0 V to 3.6 V		-	100	110	-	110	μS
		V _{CC} = 4.5 V to 5.5 V		-	100	110	-	110	μS
		C _{EXT} = 0.1 μF	[3]						
		V _{CC} = 1.65 V to 1.95 V		-	1.0	1.05	-	1.05	ms
		V _{CC} = 2.7 V		-	1.0	1.05	-	1.05	ms
		V _{CC} = 3.0 V to 3.6 V		-	1.0	1.05	-	1.05	ms
		V _{CC} = 3.0 V to 3.6 V		-	1.0	1.05	-	1.05	ms
		V _{CC} = 4.5 V to 5.5 V		-	1.0	1.05	-	1.05	ms
t _{rtrig}	retrigger time	A, B; see Figure 8							
		$C_{EXT} = 100 \text{ pF}; R_{EXT} = 5 \text{ k}\Omega$							
		V _{CC} = 1.65 V to 1.95 V		-	174	-	-	-	ns
		V _{CC} = 2.3 V to 2.7 V		-	59	-	-	-	ns
		$C_{EXT} = 100 \text{ pF}; R_{EXT} = 1 \text{ k}\Omega$							
		V _{CC} = 3.0 V to 3.6 V		-	32	-	-	-	ns
		V _{CC} = 4.5 V to 5.5 V		-	20	-	-	-	ns
		$C_{EXT} = 100 \mu F; R_{EXT} = 5 k\Omega$							
		V _{CC} = 1.65 V to 1.95 V		-	14	-	-	-	ms
		V _{CC} = 2.3 V to 2.7 V		-	10	-	-	-	ms
		$C_{EXT} = 100 \mu F; R_{EXT} = 1 k\Omega$							
		V _{CC} = 3.0 V to 3.6 V		-	10	-	-	-	ms
		V _{CC} = 4.5 V to 5.5 V		-	8	-	-	-	ms
R _{ext}	external	see Figure 12, Figure 13 and Figure 14							
	resistance	V _{CC} = 2.0 V		5	-	-	-	-	kΩ
		V _{CC} ≥ 3.0 V		1	-	-	-	-	kΩ
C _{ext}	external capacitance	V _{CC} = 5.0 V; see Figure 12, Figure 13 and Figure 14		-	-	-	-	-	pF

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Table 9. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 18.

Symbol	Parameter	Conditions	-40	-40 °C to +85 °C			-40 °C to +125 °C	
			Min	Typ[1]	Max	Min	Max	
C _{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC}; C_{EXT} = 0 \text{ pF};$						
		$R_{EXT} = 5 k\Omega$						
		V _{CC} = 1.8 V	-	35	-	-	-	pF
		V _{CC} = 2.5 V	-	35	-	-	-	pF
		$R_{EXT} = 1 k\Omega$						
		V _{CC} = 3.3 V	-	27	-	-	-	pF
		V _{CC} = 5.0 V	-	29	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 3.3 V and 5.0 V respectively.

 $t_W = K \times R_{EXT} \times C_{EXT},$ where:

tw = typical output pulse width in ns;

 R_{EXT} = external resistor in $k\Omega$;

C_{EXT} = external capacitor in pF;

K = constant = 1; see Figure 15 for typical "K" factor as function of V_{CC}.

13 of 31

^[2] t_{pd} is the same as t_{PHL} and t_{PLH} ; t_t is the same as t_{THL} and t_{TLH}

^[3] For other R_{EXT} and C_{EXT} combinations see Figure 12, Figure 13 and Figure 14. If C_{EXT} > 10 nF, the next formula is valid.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

12. Waveforms, graphs and test circuit

Table 10. Measurement points

Supply voltage	Input	Output	
V _{CC}	V _M	V _M	
1.65 V to 1.95 V	0.5V _{CC}	0.5V _{CC}	
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}	
2.7 V	1.5 V	1.5 V	
3.0 V to 3.6 V	1.5 V	1.5 V	
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	

Single retriggerable monostable multivibrator; Schmitt trigger inputs

16 of 31

$$V_{CC} = 1.8 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}.$$

- (1) $R_{EXT} = 200 \text{ k}\Omega$
- (2) $R_{EXT} = 100 \text{ k}\Omega$
- (3) $R_{EXT} = 10 \text{ k}\Omega$
- (4) $R_{EXT} = 5 k\Omega$

Fig 12. Typical output pulse width as a function of the external capacitor value

$$V_{CC} = 3.3 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}.$$

- (1) $R_{EXT} = 200 \text{ k}\Omega$
- (2) $R_{EXT} = 100 \text{ k}\Omega$
- (3) $R_{EXT} = 10 \text{ k}\Omega$
- (4) $R_{EXT} = 5 k\Omega$
- (5) $R_{EXT} = 1 k\Omega$

Fig 13. Typical output pulse width as a function of the external capacitor value

$$V_{CC} = 5.0 \text{ V}$$
; $T_{amb} = 25 \,^{\circ}\text{C}$.

- (1) $R_{EXT} = 200 \text{ k}\Omega$
- (2) $R_{EXT} = 100 \text{ k}\Omega$
- (3) $R_{EXT} = 10 \text{ k}\Omega$
- (4) $R_{EXT} = 5 k\Omega$
- (5) $R_{EXT} = 1 k\Omega$

Fig 14. Typical output pulse width as a function of the external capacitor value

$$R_{EXT} = 10 \text{ k}\Omega; T_{amb} = 25 \text{ °C}.$$

- (1) $C_{EXT} = 1000 pF$
- (2) $C_{EXT} = 0.01 \mu F$
- (3) $C_{EXT} = 0.1 \mu F$

Fig 15. Typical 'K' factor as function of V_{CC}

$$T_{amb} = 25 \, ^{\circ}C.$$

- (1) $C_{EXT} = 0.01 \mu F$
- (2) $C_{EXT} = 1000 pF$
- (3) $C_{EXT} = 100 pF$
- (4) $C_{EXT} = 10 pF$

Fig 16. Minimum retrigger time as function of the supply voltage

Single retriggerable monostable multivibrator; Schmitt trigger inputs

 $R_{EXT} = 10 \text{ k}\Omega$; $T_{amb} = 25 \,^{\circ}\text{C}$.

- (1) $V_{CC} = 1.8 \text{ V}$
- (2) $V_{CC} = 2.5 \text{ V}$
- (3) $V_{CC} = 3.3 \text{ V}$
- (4) $V_{CC} = 5.0 \text{ V}$

Fig 17. Typical 'K' factor as function of C_{EXT}

19 of 31

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Test data is given in Table 11.

Definitions for test circuit:

R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = Test voltage for switching times.

Fig 18. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Input		Load		V _{EXT}	
V _{CC}	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	15 pF	1 ΜΩ	open	
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	15 pF	1 ΜΩ	open	
2.7 V	2.7 V	≤ 2.5 ns	15 pF	1 ΜΩ	open	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	15 pF	1 ΜΩ	open	
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	15 pF	1 ΜΩ	open	
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open	
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open	

13. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

Fig 19. Package outline SOT505-2 (TSSOP8)

02-01-16

 \bigcirc

SOT505-2

Fig 20. Package outline SOT765-1 (VSSOP8)

74LVC1G123

Fig 21. Package outline SOT833-1 (XSON8)

23 of 31

Fig 22. Package outline SOT1089 (XSON8)

Fig 23. Package outline SOT996-2 (XSON8)