: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

74LVC543A

Octal D-type registered transceiver; 3-state

FEATURES

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Supply voltage range from 1.2 V to 3.6 V
- Complies with JEDEC standard JESD8-B/JESD36
- CMOS low-power consumption
- Direct interface with TTL levels
- 8-bit octal transceiver with D-type latch
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- 3-state non-inverting outputs for bus oriented applications
- High-impedance when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- ESD protection:
- HBM EIA/JESD22-A114-B exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V .
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

DESCRIPTION

The 74LVC543A is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The 74LVC543A is an octal registered transceiver containing two sets of D-type latches for temporary storage of the data flow in either direction. Separate latch enable inputs (pins $\overline{\mathrm{LE}}_{\mathrm{AB}}$ and $\overline{\mathrm{LE}}_{\mathrm{BA}}$) and output enable inputs (pins $\mathrm{OE}_{\mathrm{AB}}$ and $\mathrm{OE}_{\mathrm{BA}}$) are provided for each register to permit independent control of inputting and outputting in either direction of the data flow.

The 74LVC543A contains eight D-type latches, with separate inputs and controls for each set. For data flow from pins A to B, for example, the A to B enable input (pin $\bar{E}_{A B}$) must be LOW in order to enter data from pins A0 to A7 or take data from pins B0 to B7, as indicated in the "Function table". With pin $\bar{E}_{A B}$ LOW, a LOW signal on the A to B latch enable input (pin $\overline{L E}_{A B}$) makes the A to B latches transparent; a subsequent LOW-to-HIGH transition on pin $\overline{L E}_{\mathrm{AB}}$ puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With pins $\overline{\mathrm{E}}_{\mathrm{AB}}$ and $\overline{\mathrm{OE}}_{\mathrm{AB}}$ both LOW, the 3 -state B output buffers are active and display the data present at the outputs of the A latches.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\mathrm{PLH}}$	propagation delay An to $\mathrm{Bn} ; \mathrm{Bn}$ to An	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	3.0	ns
C_{I}	input capacitance		4.0	pF
$\mathrm{C}_{\text {I/O }}$	input/output capacitance		5.0	pF
C_{PD}	power dissipation capacitance per latch	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ;$ notes 1 and 2 outputs enabled outputs disabled	15.0	pF
		3.0	pF	

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in μW).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ total load switching outputs;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.

FUNCTION TABLE

See note 1.

OPERATING MODES	INPUT				OUTPUT
	$\overline{\mathbf{O E}}_{\mathbf{x x}}$	$\overline{\mathrm{E}}_{\mathbf{X x}}$	$\overline{\mathrm{LE}}_{\mathbf{X x}}$	DATA	
Disabled	H	X	X	X	Z
	X	H	X	X	Z
Disabled plus latch	L	\uparrow	L	h	Z
	L	\uparrow	L	I	Z
Latch plus display	L	L	\uparrow	h	H
	L	L	\uparrow	I	L
Transparent	L	L	L	H	H
	L	L	L	L	L
Hold (do nothing)	L	L	H	X	NC

Note

1. $X X=A B$ for A to B direction; $B A$ for B to A direction;

H = HIGH voltage level;
L = LOW voltage level;
$h=H I G H$ state must be present one set-up time before the LOW-to-HIGH transition of $\overline{L E}_{A B}, \overline{L E}_{B A}, \bar{E}_{A B}$ and $\bar{E}_{B A}$;
$I=L O W$ state must be present one set-up time before the LOW-to-HIGH transition of $\overline{\mathrm{LE}}_{\mathrm{AB}}, \overline{\mathrm{LE}}_{\mathrm{BA}}, \overline{\mathrm{E}}_{\mathrm{AB}}$ and $\overline{\mathrm{E}}_{\mathrm{BA}}$;
X = don't care;
$\uparrow=$ LOW-to-HIGH level transition;
$\mathrm{NC}=$ no change;
Z = high-impedance OFF-state.

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE RANGE	PACKAGE			
		PINS	PACKAGE	MATERIAL	CODE
74LVC543AD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24	SO24	plastic	SOT137-1
$74 \mathrm{LVC} 543 A D B$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24	SSOP24	plastic	SOT340-1
$74 \mathrm{LVC} 543 A P W$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24	TSSOP24	plastic	SOT355-1
$74 \mathrm{LVC} 543 A B Q$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24	DHVQFN24	plastic	SOT815-1

Octal D-type registered transceiver; 3-state
74LVC543A

PINNING

PIN	SYMBOL	DESCRIPTION
1	$\overline{\mathrm{LE}}_{\mathrm{BA}}$	B to A latch enable input (active LOW)
2	$\overline{\mathrm{OE}}_{\mathrm{BA}}$	B to A output enable input (active LOW)
3	A 0	A data input or output
4	A 1	A data input or output
5	A 2	A data input or output
6	A 3	A data input or output
7	A 4	A data input or output
8	A 5	A data input or output
9	A 6	A data input or output
10	A 7	A data input or output
11	$\overline{\mathrm{E}}_{\mathrm{AB}}$	A to B enable input (active LOW)
12	GND	ground (0 V)

$\overline{L E}_{B A} 1$	U	24 Vcc
$\overline{O E}_{B A} 2$		$23 \mathrm{E}_{\mathrm{BA}}$
A0 3		22 BO
A1 4		21 B1
A2 5		20 B2
A3 6	543 A	19 в3
A4 7	543A	18 B4
A5 8		17 B5
A6 9		16 B6
A7 10		15 B7
$\bar{E}_{\text {AB }} 11$		$14 \overline{L E}_{\text {AB }}$
GND 12		$13 \overline{\mathrm{OE}}_{\mathrm{AB}}$

Fig. 1 Pin configuration SO24 and (T)SSOP24.

PIN	SYMBOL	DESCRIPTION
13	$\overline{\text { OE }}_{\text {AB }}$	A to B output enable input (active LOW)
14	$\overline{\text { LE }}_{\text {AB }}$	A to B latch enable input (active LOW)
15	B7	B data output or input
16	B6	B data output or input
17	B5	B data output or input
18	B4	B data output or input
19	B3	B data output or input
20	B2	B data output or input
21	B1	B data output or input
22	B0	B data output or input
23	$\overline{\mathrm{E}}_{\mathrm{BA}}$	B to A enable input (active LOW)
24	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 2 Pin configuration DHVQFN24.

Fig. 3 Logic symbol.

Fig. 4 Logic symbol (IEEE/IEC).

Fig. 5 Logic diagram.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low-voltage applications	1.2	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	output HIGH or LOW state	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		output 3-state	0	5.5	V
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature	in free air	-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V); note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+6.5	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage	note 2	-0.5	+6.5	V
I_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-	± 50	mA
$\mathrm{~V}_{\mathrm{O}}$	output voltage	output HIGH or LOW state; note 2	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
		output 3-state; note 2	-0.5	+6.5	V
I_{O}	output source or sink current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	-	± 50	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	V_{CC} or GND current		-	± 100	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ;$ note 3	-	500	mW

Notes

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
3. For SO24 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.

For (T)SSOP24 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.
For DHVQFN24 packages: above $60^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; note 1							
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V
			2.7 to 3.6	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.2	-	-	GND	V
			2.7 to 3.6	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \text { to } 3.6 \\ & 2.7 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.2 \\ & \mathrm{~V}_{\mathrm{CC}}-0.5 \\ & \mathrm{~V}_{\mathrm{CC}}-0.6 \\ & \mathrm{~V}_{\mathrm{CC}}-0.8 \\ & \hline \end{aligned}$	$V_{C C^{(2)}}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \end{array}$	$\begin{array}{\|l} 2.7 \text { to } 3.6 \\ 2.7 \\ 3.0 \\ \hline \end{array}$		$\mathrm{GND}^{(2)}$	$\begin{array}{\|l\|} 0.2 \\ 0.4 \\ 0.55 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
ILI	input leakage current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND	3.6	-	± 0.1	± 5	$\mu \mathrm{A}$
I_{OZ}	3-state output OFF-state current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ;$ $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ or GND; note 3	3.6	-	0.1	± 10	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	power-off leakage supply	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0.0	-	0.1	± 10	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	3.6	-	0.1	10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	2.7 to 3.6	-	$5^{(2)}$	500	$\mu \mathrm{A}$

Octal D-type registered transceiver; 3-state

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V
			2.7 to 3.6	2.0	-	-	V
VIL	LOW-level input voltage		1.2	-	-	0	V
			2.7 to 3.6	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 2.7 \text { to } 3.6 \\ & 2.7 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.65 \\ & V_{C C}-0.75 \\ & V_{C C}-1 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA} \end{array}$	$\begin{array}{\|l} 2.7 \text { to } 3.6 \\ 2.7 \\ 3.0 \\ \hline \end{array}$	$\left.\right\|_{-} ^{-}$		$\begin{array}{\|l} \hline 0.3 \\ 0.6 \\ 0.8 \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND	3.6	-	-	± 20	$\mu \mathrm{A}$
l_{Oz}	3-state output OFF-state current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ;$ $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$ or GND; note 3	3.6	-	-	± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	power-off leakage supply	V_{1} or $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	0.0	-	-	± 20	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	3.6	-	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	2.7 to 3.6	-	-	5000	$\mu \mathrm{A}$

Notes

1. All typical values are measured $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
3. For transceivers, the parameter l_{Oz} includes the input leakage current.

Octal D-type registered transceiver; 3-state

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; note 1							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay An to Bn ; Bn to An	see Figs 6 and 10	1.2	-	15	-	ns
			2.7	1.5	-	8.0	ns
			3.0 to 3.6	1.0	$3.0{ }^{(2)}$	7.0	ns
	propagation delay $\overline{\mathrm{LE}}_{\mathrm{BA}}$ to An ; $L^{A B}$ to Bn	see Figs 7 and 10	1.2	-	16	-	ns
			2.7	1.5	-	9.5	ns
			3.0 to 3.6	1.2	$4.2^{(2)}$	8.5	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{\mathrm{OE}}_{\mathrm{BA}}$ to An ; $\overline{\mathrm{OE}}_{\mathrm{AB}}$ to Bn	see Figs 8 and 10	1.2	-	17	-	ns
			2.7	1.5	-	9.2	ns
			3.0 to 3.6	1.3	$3.4{ }^{(2)}$	7.7	ns
	3-state output enable time $\bar{E}_{B A}$ to $A n ; \bar{E}_{A B}$ to $B n$	see Figs 8 and 10	1.2	-	18	-	ns
			2.7	1.5	-	9.3	ns
			3.0 to 3.6	1.3	$3.6{ }^{(2)}$	8.0	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{\mathrm{OE}}_{\mathrm{BA}}$ to An ; $\overline{\mathrm{OE}}_{\mathrm{AB}}$ to Bn	see Figs 8 and 10	1.2	-	8.0	-	ns
			2.7	1.5	-	7.5	ns
			3.0 to 3.6	1.5	$3.2{ }^{(2)}$	7.0	ns
	3-state output disable time E_{BA} to $\mathrm{An} ; \mathrm{E}_{\mathrm{AB}}$ to Bn	see Figs 8 and 10	1.2	-	8.5	-	ns
			2.7	1.5	-	7.5	ns
			3.0 to 3.6	1.5	$3.3{ }^{(2)}$	7.0	ns
tw	$\overline{L E}_{\text {Xx }}$ pulse with LOW	see Fig. 7	1.2	-	4.0	-	ns
			2.7	3.0	-	-	ns
			3.0 to 3.6	3.0	$0.9{ }^{(2)}$	-	ns
$\mathrm{t}_{\text {su }}$	set-up time $A n, B n$ to $\overline{L E}_{X X}$; An, Bn to E_{XX}	see Fig. 9	1.2	-	-1.5	-	ns
			2.7	1.5	-	-	ns
			3.0 to 3.6	+1.5	$-0.5^{(2)}$	-	ns
t_{h}	hold time An, Bn to $\overline{\mathrm{LE}}_{\mathrm{XX}} ; \mathrm{An}, \mathrm{Bn}$ to $\overline{\mathrm{E}}_{X X}$	see Fig. 9	1.2	-	2.0	-	ns
			2.7	1.5	-	-	ns
			3.0 to 3.6	1.5	$0.6{ }^{(2)}$	-	ns
$\mathrm{t}_{\text {sk(0) }}$	skew	note 3		-	-	1.0	ns

Octal D-type registered transceiver; 3-state

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay An to Bn ; Bn to An	see Figs 6 and 10	1.2	-	-	-	ns
			2.7	1.5	-	10.0	ns
			3.0 to 3.6	1.0	-	9.0	ns
	propagation delay $\overline{\mathrm{LE}}_{\mathrm{BA}}$ to An ; $L E_{A B}$ to Bn	see Figs 7 and 10	1.2	-	-	-	ns
			2.7	1.5	-	12.0	ns
			3.0 to 3.6	1.2	-	11.0	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{\mathrm{OE}}_{\mathrm{BA}}$ to An ; $\mathrm{OE}_{\mathrm{AB}}$ to Bn	see Figs 8 and 10	1.2	-	-	-	ns
			2.7	1.5	-	11.5	ns
			3.0 to 3.6	1.3	-	10.0	ns
	3-state output enable time $\mathrm{E}_{B A}$ to $\mathrm{An} ; \mathrm{E}_{A B}$ to Bn	see Figs 8 and 10	1.2	-	-	-	ns
			2.7	1.5	-	12.0	ns
			3.0 to 3.6	1.3	-	10.0	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\mathrm{OE}_{\mathrm{BA}}$ to An ; $\mathrm{OE}_{\mathrm{AB}}$ to Bn	see Figs 8 and 10	1.2	-	-	-	ns
			2.7	1.5	-	9.5	ns
			3.0 to 3.6	1.5	-	9.0	ns
	3-state output disable time $\bar{E}_{B A}$ to $A n ; \bar{E}_{A B}$ to $B n$	see Figs 8 and 10	1.2	-	-	-	ns
			2.7	1.5	-	11.5	ns
			3.0 to 3.6	1.5	-	9.0	ns
tw	$\overline{\mathrm{LE}}_{\text {Xx }}$ pulse with LOW	see Fig. 7	1.2	-	-	-	ns
			2.7	3.0	-	-	ns
			3.0 to 3.6	3.0	-	-	ns
$\mathrm{t}_{\text {su }}$	set-up time An, Bn to $\overline{\mathrm{LE}}_{X X} ; \mathrm{An}$, Bn to $\mathrm{E}_{X X}$	see Fig. 9	1.2	-	-	-	ns
			2.7	1.5	-	-	ns
			3.0 to 3.6	1.5	-	-	ns
th	hold time An, Bn to $\overline{\mathrm{LE}}_{X X} ; \mathrm{An}, \mathrm{Bn}$ to $\overline{\mathrm{E}}_{X X}$	see Fig. 9	1.2	-	-	-	ns
			2.7	1.5	-	-	ns
			3.0 to 3.6	1.5	-	-	ns
$\mathrm{t}_{\text {sk(0) }}$	skew	note 3		-	-	1.5	ns

Notes

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

Octal D-type registered transceiver; 3-state

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 6 Input (An and Bn) to output (Bn and An) propagation delays.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$V_{M}=0.5 \times V_{C C}$ at $V_{C C}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 7 Latch enable input ($\overline{\mathrm{LE}}_{\mathrm{Xx}}$) pulse width and latch enable input to output An and Bn propagation delays.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.1 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.1 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
Fig. 8 3-state enable and disable times.

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.
Fig. 9 Data set-up and hold times for the inputs $A n$ and $B n$ to $\overline{L E}_{X X}$ and $\bar{E}_{X X}$ inputs.

					$\mathrm{V}_{\text {EXt }}$	
				$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PHZ }}$	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PLZ }}$
1.2 V	V_{CC}	50 pF	$500 \Omega^{(1)}$	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$
2.7 V	2.7 V	50 pF	500Ω	open	GND	$2 \times V_{C C}$
3.0 V to 3.6 V	2.7 V	50 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\text {cC }}$
Note 1. The circuit performs better when $R_{L}=1000 \Omega$.						
Definitions for test circuits: $R_{L}=$ Load resistor. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance including jig and probe capacitance. $R_{T}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator. Fig. 10 Load circuitry for switching times.						

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.1	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT137-1	075E05	MS-013		$\square \oplus$	$\begin{aligned} & \hline-99-12-27 \\ & 03-02-19 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| max. | | $\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{2}} \quad \mathbf{A}_{\mathbf{3}} \quad \mathbf{b}_{\mathbf{p}} \quad \mathbf{c}$

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT340-1		MO-150		$\square \oplus$	$\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} A \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	8° 0

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT355-1		MO-153		\bigcirc	$\begin{aligned} & -9-12-27 \\ & 03-02-19 \end{aligned}$

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85 \mathrm{~mm}$

UNIT	$\begin{gathered} \mathrm{A}^{(1)} \\ \max . \end{gathered}$	A_{1}	b	c	$D^{(1)}$	D_{h}	$E^{(1)}$	E_{h}	e	e_{1}	\mathbf{e}_{2}	L	v	w	y	y_{1}
mm	1	$\begin{aligned} & 0.05 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.18 \end{aligned}$	0.2	$\begin{aligned} & 5.6 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 1.95 \end{aligned}$	0.5	4.5	1.5	$\begin{aligned} & 0.5 \\ & 0.3 \end{aligned}$	0.1	0.05	0.05	0.1

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT815-1	---	---	---	$\square \oplus$	03-04-29

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

