imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

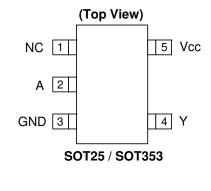
Contact us

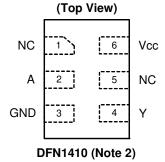
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SINGLE INVERTER GATE

Description

The 74LVCE1G04 is a single inverter gate with a standard totem pole output. The device is designed for operation with a power supply range of 1.4V to 5.5V. The inputs are tolerant to 5.5V allowing this device to be used in a mixed voltage environment. The device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output preventing damaging current backflow when the device is powered down.


The gate performs the positive Boolean function:


$$Y = \overline{A}$$

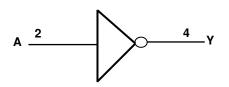
Features

- Extended Supply Voltage Range from 1.4 to 5.5V
- Switching speed characterized for operation at 1.5V
- Offers 30% speed improvement over LVC at 1.8V.
- ± 24mA Output Drive at 3.3V
- CMOS low power consumption
- IOFF Supports Partial-Power-Down Mode Operation
- Input accepts up to 5.5V
- ESD Protection Tested per JESD 22
 Exceeds 200-V Machine Model (A115-A)
 Exceeds 2000-V Human Body Model (A114-A)
- Latch-Up Exceeds 100mA per JESD 78, Class II
- Range of Package Options
- Direct Interface with TTL Levels
- SOT25, SOT353, and DFN1410: Assembled with "Green" Molding Compound (no Br, Sb)
- Lead Free Finish/ RoHS Compliant (Note 1)

Pin Assignments

Applications

- Voltage Level Shifting
- General Purpose Logic
- Wide array of products such as.
 - o PCs, networking, notebooks, netbooks, PDAs
 - o Computer peripherals, hard drives, CD/DVD ROM
 - TV, DVD, DVR, set top box
 - o Cell Phones, Personal Navigation / GPS
 - o MP3 players ,Cameras, Video Recorders
- Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. Please visit our website at http://www.diodes.com/products/lead_free.html.
 - 2. Pin 2 and pin 5 of the DFN1410 package are internally connected.



SINGLE INVERTER GATE

Pin Descriptions

Pin Name	Description			
NC	No connection			
А	Data Input			
GND	Ground			
Y	Data Output			
Vcc	Supply Voltage			

Logic Diagram

Function Table

Inputs	Output
Α	Y
Н	L
L	Н

SINGLE INVERTER GATE

Absolute Maximum Ratings (Note 3)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD MM	Machine Model ESD Protection	200	V
V _{CC}	Supply Voltage Range	-0.5 to 6.5	V
VI	Input Voltage Range	-0.5 to 6.5	V
Vo	Voltage applied to output in high impedance or IOFF state	-0.5 to 6.5	V
Vo	Voltage applied to output in high or low state	-0.3 to V _{CC} +0.5	V
I _{IK}	Input Clamp Current V _I <0	-50	mA
Ι _{ΟΚ}	Output Clamp Current	-50	mA
Ι _Ο	Continuous output current	±50	mA
	Continuous current through Vdd or GND	±100	mA
TJ	Operating Junction Temperature	-40 to 150	°C
T _{STG}	Storage Temperature	-65 to 150	°C

Note: 3. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

SINGLE INVERTER GATE

Recommended Operating Conditions (Note 4)

Symbol		Parameter	Min	Max	Unit	
		Operating	1.4	5.5	V	
V _{cc}	Operating Voltage	Data retention only	1.2		V	
		V _{CC} = 1.4 V to 1.95 V	0.65 X V _{CC}			
N/		$V_{\rm CC}$ = 2.3 V to 2.7 V	1.7		V	
V _{IH}	High-level Input Voltage	V _{CC} = 3 V to 3.6 V	2		V	
		$V_{\rm CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	0.7 X V _{CC}			
		V _{CC} = 1.4 V to 1.95 V		0.35 X V_{CC}		
N/	Low-level input voltage	$V_{\rm CC}$ = 2.3 V to 2.7 V		0.7		
V _{IL}		V _{CC} = 3 V to 3.6 V		0.8	V	
		$V_{\rm CC} = 4.5 \text{ V}$ to 5.5 V		0.3 X V _{CC}		
VI	Input Voltage	• · · ·	0	5.5	V	
Vo	Output Voltage		0	V _{CC}	V	
	High-level output current	Vcc=1.4 V		-3		
		V _{CC} = 1.65 V		-4		
		V _{CC} = 2.3 V		-8		
I _{OH}				-16	mA	
		$V_{CC} = 3 V$		-24		
		$V_{\rm CC} = 4.5 \rm V$		-32		
		Vcc=1.4 V		3		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8	mA	
I _{OL}	Low-level output current			16		
		$V_{CC} = 3 V$		24		
		V _{CC} = 4.5 V		32		
		V _{CC} = 1.4 to 3V		20		
Δt/ΔV	Input transition rise or fall	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V	
-	rate	$V_{CC} = 5 V \pm 0.5 V$		5	110, 1	
T _A	Operating free-air temperature		-40	85	⁰C	

Note: 4. Unused inputs should be held at Vcc or Ground.

SINGLE INVERTER GATE

Electrical Characteristics (All typical values are at Vcc = 3.3V, T_A = 25° C)

Symbol	Parameter	Test Conditions	Vcc	Min	Тур.	Max	Unit	
		I _{OH} = -100μA	1.4 V to 5.5V	$V_{CC} - 0.1$				
		I _{OH} = -3mA	1.4 V	1.05				
		I _{OH} = -4mA	1.65 V	1.2				
V _{OH}	High Level Output Voltage	I _{OH} = -8mA	2.3V	1.9			V	
	Vollage	I _{OH} = -16mA	3 V	2.4				
		I _{OH} = -24mA	- 3 V	2.3				
		I _{OH} = -32mA	4.5 V	3.8				
		I _{OL} = 100μA	1.4 V to 5.5V			0.1		
		I _{OL} = 3mA	1.4V			.4		
V _{OL}		I _{OL} = 4mA	1.65 V			0.45	V	
	High-level Input Voltage	I _{OL} = 8mA	2.3V			0.3		
		I _{OL} = 16mA	3 V			0.4		
		$I_{OL} = 24 \text{mA}$				0.55		
		I _{OL} = 32mA	4.5			0.55		
I _I	Input Current	$V_1 = 5.5 \text{ V or GND}$	0 to 5.5 V			± 5	μA	
I _{OFF}	Power Down Leakage Current	$V_1 \text{ or } V_0 = 5.5 V$	0			± 10	μA	
I _{CC}	Supply Current	$V_1 = 5.5V \text{ of GND}$ $I_0=0$	1.4 V to 5.5V			10	μA	
Ci	Input Capacitance	$V_i = V_{CC} - or GND$	3.3		3.5		pF	
		SOT25	(Note 5)		204			
θ_{JA}	Thermal Resistance Junction-to-Ambient	SOT353	(Note 5)		371		°C/W	
	Junction-to-Ambient	DFN1410	(Note 5)		430		1	
		SOT25	(Note 5)	,				
$\theta^{\rm JC}$	Thermal Resistance	SOT353	(Note 5)		143		°C/W	
00	Junction-to-Case	DFN1410	(Note 5)		190		0/11	

Over recommended free-air temperature range (unless otherwise noted)

Note: 5. Test condition for SOT25, SOT353, and DFN1410: Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

SINGLE INVERTER GATE

Switching Characteristics

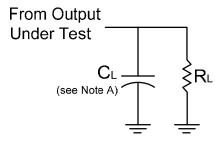
	Parameter From TO (Input) (OUTPUT)	-		Vcc = ± 0			1.8 V .15V		2.5 V 0.2V		: 3.3 V).3V		= 5 V).5V	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Мах			
	t _{pd}	А	Y	2	6.4	1.4	4.4	0.8	3.3	0.5	2.7	0.5	2.7	ns

Over recommended free-air temperature range, CL = 15pF (see Figure 1)

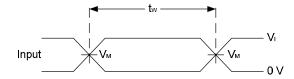
Over recommended free-air temperature range, CL = 30 or 50pF as noted (see Figure 2)

Parameter	Parameter From TO		Vcc = ± 0			: 1.8 V .15V		: 2.5 V).2V	Vcc = ± 0	: 3.3 V).3V		= 5 V).5V	Unit
	(Input)	(OUTPUT)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	•
t _{pd}	А	Y	3	7.5	2.1	5.2	1.1	4.1	0.8	3.4	0.9	3.3	ns

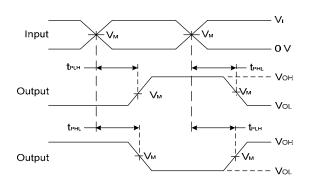
Operating Characteristics


 $T_A = 25 \ ^{o}C$

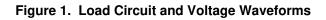
Р	arameter	Test	Vcc = 1.5 V	Vcc = 1.8 V	Vcc = 2.5 V	Vcc = 3.3 V	Vcc = 5 V	Unit
-	Conditi		ТҮР	ТҮР	ТҮР	ТҮР	ТҮР	•
C _{pd}	Power dissipation capacitance	f = 10 MHz	16	16	18	18	20	pF



SINGLE INVERTER GATE

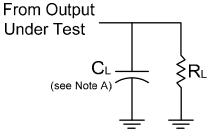

Parameter Measurement Information

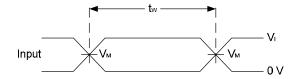
Vec	Vcc		V.,	C	D.
VCC	VI	t _r /t _f	V _M	CL	RL
1.5V±0.1V	V _{CC}	≤2ns	V _{CC} /2	15pF	1MΩ
1.8V±0.15V	V _{CC}	≤2ns	V _{CC} /2	15pF	1MΩ
2.5V±0.2V	V _{CC}	≤2ns	V _{CC} /2	15pF	1MΩ
3.3V±0.3V	3V	≤2.5ns	1.5V	15pF	1MΩ
5V±0.5V	V _{CC}	≤2.5ns	V _{CC} /2	15pF	1MΩ


Voltage Waveform Pulse Duration

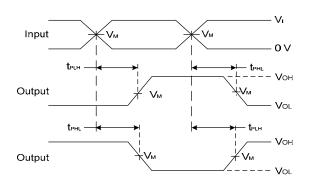
Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs

Notes: A. Includes test lead and test apparatus capacitance.


- B. All pulses are supplied at pulse repetition rate ≤ 10 MHz.
- C. Inputs are measured separately one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as $t_{PD.}$



SINGLE INVERTER GATE

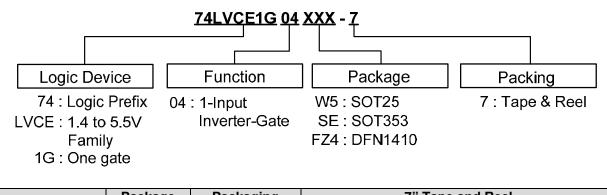

Parameter Measurement Information (Continued)

Vcc	Ing	outs	V _M	CL	RL
	VI	t _r /t _f	• 101	υL	•••
1.5V±0.1V	V _{cc}	≤2ns	V _{CC} /2	30pF	1KΩ
1.8V±0.15V	V _{CC}	≤2ns	V _{CC} /2	30pF	1KΩ
2.5V±0.2V	V _{cc}	≤2ns	V _{CC} /2	30pF	500Ω
3.3V±0.3V	3V	≤2.5ns	1.5V	50pF	500Ω
5V±0.5V	V _{CC}	≤2.5ns	V _{CC} /2	50pF	500Ω

Voltage Waveform Pulse Duration

Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs

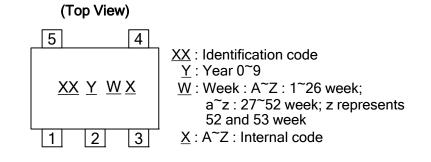
Notes: A. Includes test lead and test apparatus capacitance.


- B. All pulses are supplied at pulse repetition rate ≤ 10 MHz.
- C. Inputs are measured separately one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as $t_{PD.}$

SINGLE INVERTER GATE

Ordering Information

	Device	Package Packaging		7" Tape and Reel		
	Device	Code	(Note 5)	Quantity	Part Number Suffix	
Pb ,	74LVCE1G04W5-7	W6	SOT25	3000/Tape & Reel	-7	
Pb ,	74LVCE1G04SE-7	SE	SOT353	3000/Tape & Reel	-7	
Pb ,	74LVCE1G04FZ4-7	FZ4	DFN1410	5000/Tape & Reel	-7	


Note: 6. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

SINGLE INVERTER GATE

Marking Information

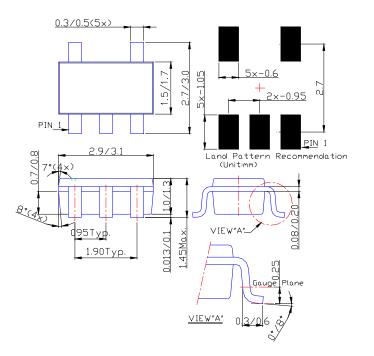
(1) SOT25 and SOT353

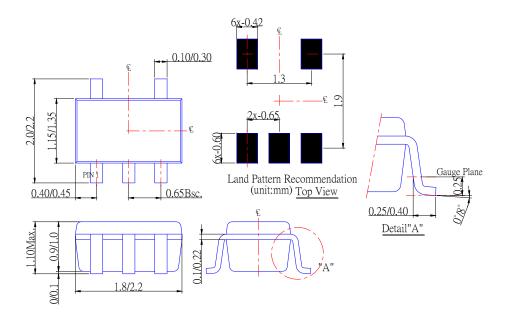
	Part Number	Package	Identification Code
Ī	74LVCE1G04W5	SOT25	PU
l	74LVCE1G04SE	SOT353	PV

(2) DFN1410H4-6

(Top View)

- $\frac{XX}{Y} : Identification Code$ $\frac{Y}{W} : Year : 0~9$ $\frac{W}{W} : Week : A~Z : 1~26 week;$
 - $a \sim z$: 27~52 week; z represents 52 and 53 week X: A~Z: Internal code

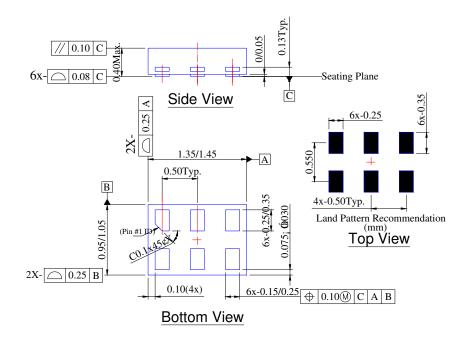

Part Number	Package	Identification Code
74LVCE1G04FZ4	DFN1410	PU


SINGLE INVERTER GATE

Package Outline Dimensions (All Dimensions in mm)

(1) Package Type: SOT25

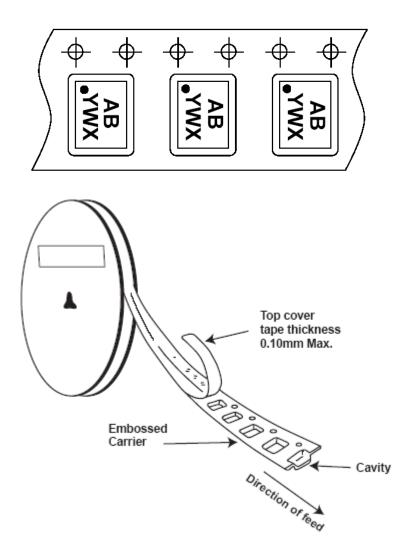
(2) Package Type: SOT353


74LVCE1G04 Document number: DS32212 Rev. 2 - 2

SINGLE INVERTER GATE

Package Outline Dimensions (All Dimensions in mm)

(3) Package Type: DFN1410



SINGLE INVERTER GATE

Taping Orientation (Note 7)

For DFN1410

SINGLE INVERTER GATE

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products or systems.

Copyright © 2010, Diodes Incorporated

www.diodes.com