

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS IDT 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

IDT74LVCH16244A

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4 w typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Available in TSSOP package

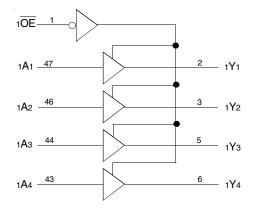
DRIVE FEATURES:

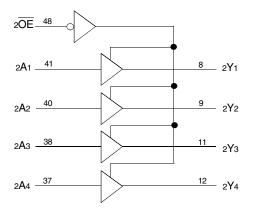
- · High Output Drivers: ±24mA
- · Reduced system switching noise

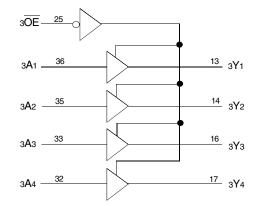
APPLICATIONS:

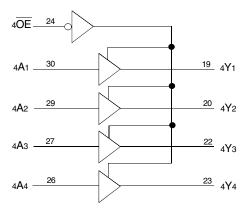
- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

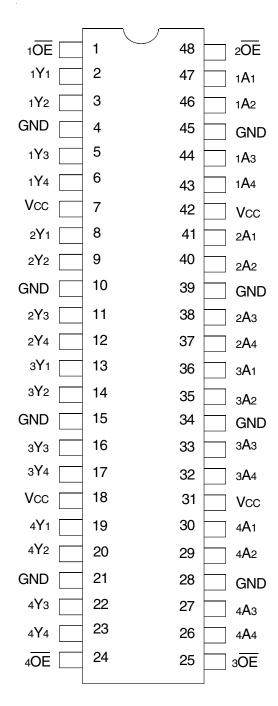

The LVCH16244A 16-bit buffer/driver is built using advanced dual metal CMOS technology. The LVCH16244A is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. This device provides true outputs and symmetrical active-low output-enable $\overline{(OE)}$ inputs.


All pins of this 16-bit buffer/driver can be driven from either 3.3V or 5V devices. This feature allows the use of this device a translator in a mixed 3.3V/5V supply system.


The LVCH16244A has been designed with a ± 24 mA output driver. The driver is capable of driving a moderate to heavy load while maintaining speed performance.


The LVCH16244A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM



 $The \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \,$

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 2015

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	- 50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

	Pin Names	Description		
	xAx	Data Inputs ⁽¹⁾		
x Y x 3-State Outputs		3-State Outputs		
x O E 3-State Output Enable Inputs (Active LOW)				

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH 4-BIT BUFFER)(1)

Inp	Outputs	
хŌЕ	xAx	хҮх
L	L	L
L	Н	Н
Н	Χ	Z

NOTES:

1. H = HIGH Voltage Level

X = Don't Care

L = LOW Voltage Level

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Tes	st Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		-	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	Vı = 0 to 5.5V	_	_	±5	μΑ
lıL							
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or VO \le 5.$	5V	-	_	±50	μA
Vık	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA	Vcc = 2.3V, lin = -18mA		-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	<u> </u>	_	10	μΑ
ICCH ICCZ			$3.6 \le \text{Vin} \le 5.5 \text{V}^{(2)}$	 _		10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μA

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	_	_	μA
IBHL			Vı = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μΑ
IBHL			Vı = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	Vı = 0 to 3.6V	_	_	±500	μA
Івньо							

NOTES:

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = -6mA	2		
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

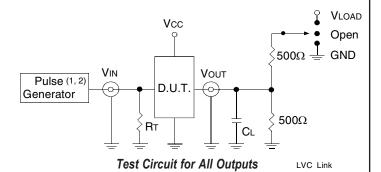
OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Buffer/Driver Outputs enabled	CL = 0pF, f = 10Mhz	34	pF
CPD	Power Dissipation Capacitance per Buffer/Driver Outputs disabled		3	

SWITCHING CHARACTERISTICS(1)

		Vcc =	2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay	_	4.7	1.1	4.1	ns
t _{PHL}	xAx to xYx					
tpzH	Output Enable Time	_	5.8	1	4.6	ns
tpzL	x OE to xYx					
tPHZ	Output Disable Time	_	6.2	1.8	5.8	ns
tPLZ	xOE to xYx					
tsk(o)	Output Skew ⁽²⁾	_	_	_	1	ns

NOTES:


- 1. See TEST CIRCUITS AND WAVEFORMS. TA = -40°C to + 85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.

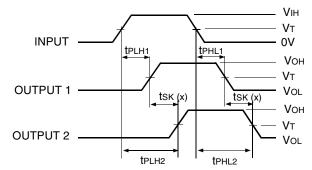
TA = - 40°C to + 85°C.

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.


RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

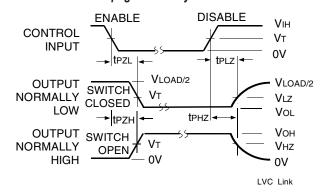
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

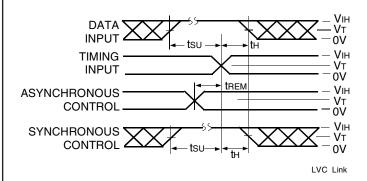
Output Skew - tsk(x)

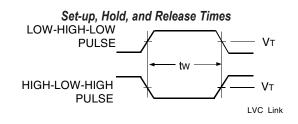

LVC Link

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

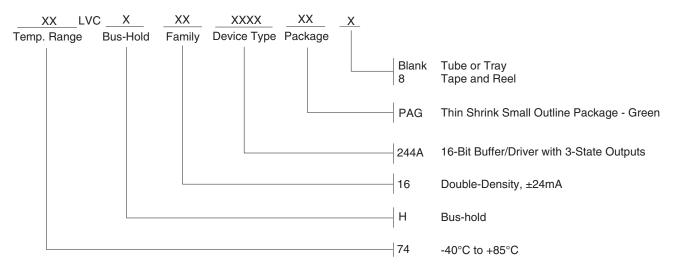
VIH SAME PHASE VT INPUT TRANSITION 0V **t**PHL VOH **OUTPUT** - VT VOL **t**PLH **t**PHL VIH OPPOSITE PHASE VΤ INPUT TRANSITION 0V LVC Link


Propagation Delay



Enable and Disable Times

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Pulse Width

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

10/06/2015 Pg. 1, 2, 6 Updated the ordering information by removing SSOP, non RoHS parts and adding Tape and Reel information.

