imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5V TOLERANT I/O AND BUS-HOLD

IDT74LVCH16374A

FEATURES:

- Typical tSK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SSOP and TSSOP packages

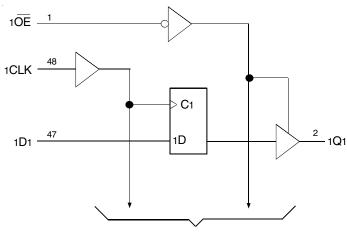
DRIVE FEATURES:

- High Output Drivers: ±24mA
- Reduced system switching noise

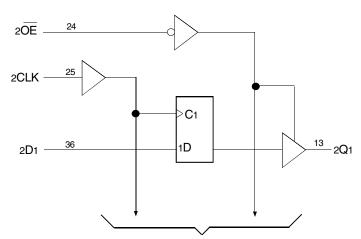
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

FUNCTIONAL BLOCK DIAGRAM


DESCRIPTION

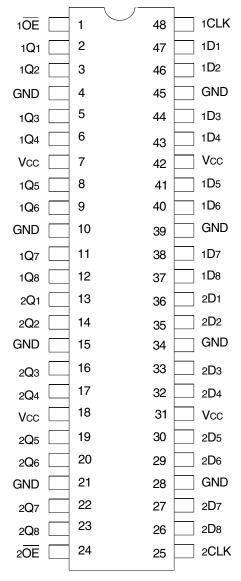
The LVCH16374A 16-bit edge-triggered D-type register is built using advanced dual metal CMOS technology. This high-speed, low-power register is ideal for use as a buffer register for data synchronization and storage. The Output Enable (\overline{OE}) and clock (CLK) controls are organized to operate each device as two 8-bit registers or one 16-bit register with common clock. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.


All pins of the LVCH16374A can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16374A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16374A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

TO SEVEN OTHER CHANNELS


TO SEVEN OTHER CHANNELS

IDT and the IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 2015

PIN CONFIGURATION

SSOP / TSSOP TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	–0.5 to +6.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	–50 to +50	mA
Ік Іок	Continuous Clamp Current, Vi < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
xDx	xDx Data Inputs ⁽¹⁾	
xCLK	Clock Inputs	
xŌĒ	OE Output Enable Inputs (Active LOW)	
xQx	3-State Outputs	

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH FLIP-FLOP)(1)

	Inputs		
xDx	xCLK	xOE	xQx
Н	↑	L	Н
L	↑	L	L
Х	H or L	L	Q ⁽²⁾
Х	Х	Н	Z

NOTES:

1. H = HIGH Voltage Level

X = Don't Care

L = LOW Voltage Level

Z = High-Impedance

 \uparrow = LOW-to-HIGH transition

2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40 °C to +85 °C

Symbol	Parameter	Test Cor	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	—	_	V
		Vcc = 2.7V to 3.6V		2	—	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	—	0.8	
Ін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V		—	±5	μA
lı∟							
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	—	±10	μA
Iozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo ≤ 5.5 V		-	—	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	-	—	10	μA
Іссн Іссz			$3.6 \le VIN \le 5.5V^{(2)}$	<u> </u>	_	10	
ΔICC	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other in	nputs at Vcc or GND	-	—	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	—	-	μA
IBHL			VI = 0.8V	75	_	—	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	—	_	μA
IBHL			VI = 0.7V	—	_	—	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	—	±500	μA
Івніо							

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestCon	ditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Іон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = - 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	—	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	1	2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IoL = 6mA	—	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

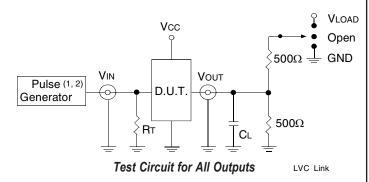
Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per Flip-Flop Outputs enabled	CL = 0pF, f = 10Mhz	58	pF
Cpd	Power Dissipation Capacitance per Flip-Flop Outputs disabled		24	

SWITCHING CHARACTERISTICS(1)

		Vcc =	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
fMAX		150	—	150	—	MHz
tPLH	Propagation Delay	-	4.9	1.5	4.5	ns
t PHL	xCLK to xQx					
tРZH	Output Enable Time	-	5.3	1.5	4.6	ns
tPZL	xOE to xQx					
t PHZ	Output Disable Time	-	6.1	1.5	5.5	ns
tPLZ	xOE to xQx					
ts∪	Set-up Time HIGH or LOW, data before CLK1	1.9	—	1.9	—	ns
tH	Hold Time HIGH or LOW, data after $CLK\uparrow$	1.1	—	1.1	_	ns
tw	Pulse duration, CLK HIGH or LOW	3.3	_	3.3	_	ns
tsk(o)	Output Skew ⁽²⁾	—	—		500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to + 85° C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVCH16374A 3.3VCMOS16-BITEDGE-TRIGGEREDD-TYPEFLIP-FLOP

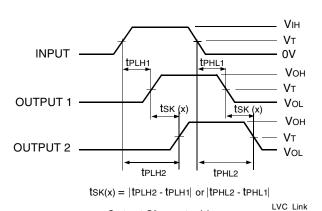
INDUSTRIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

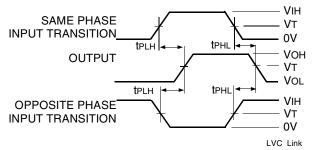

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

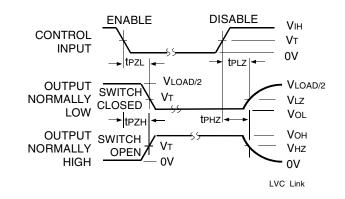
1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

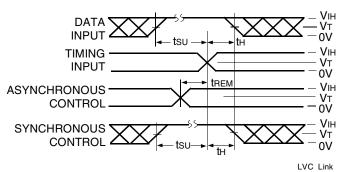


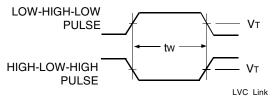
Output Skew - tsk(x)


NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

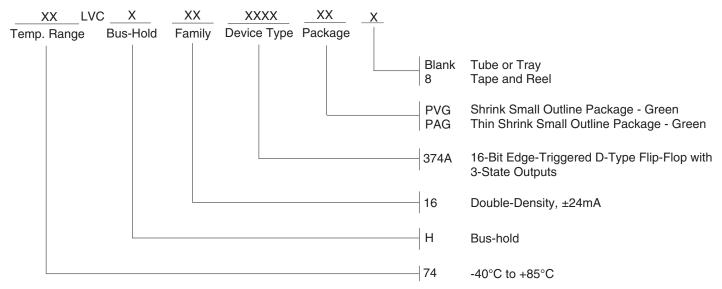
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

10/20/2015 Pg. 6 Updated the ordering information by removing non RoHS parts and adding Tape and Reel information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com