mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD

IDT74LVCH16601A

FEATURES:

- Typical tSK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in SSOP package

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Reduced system switching noise

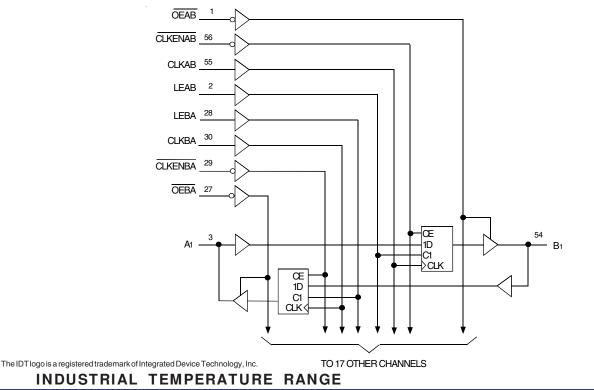
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

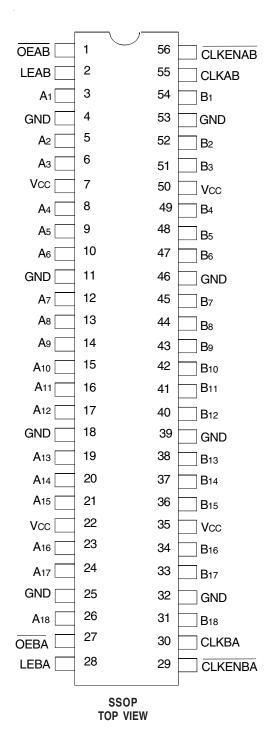
DESCRIPTION:

The LVCH16601A 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. The LVCH16601A combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latched-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable ($\overline{CLKENAB}$ and $\overline{CLKENBA}$) inputs.


For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/ flip-flop on the low-to-high transition of CLKAB. Output enable OEAB is active low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, CLKBA and CLKENBA.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.


The LVCH16601A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16601A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	рF
NOTE.					

NOTE:

1. As applicable to the device type.

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
Ік Іок	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names Description	
OEAB A-to-B Output Enable Input (Active LOW)	
OEBA	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾
Bx	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾
CLKENAB	A-to-B Clock Enable Input (Active LOW)
CLKENBA	B-to-A Clock Enable Input (Active LOW)

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE^(1,2)

	Inputs				
CLKENAB	OEAB	LEAB	CLKAB	Ax	Bx
Х	Н	Х	Х	Х	Z
Х	L	Н	Х	L	L
Х	L	Н	Х	Н	Н
Н	L	L	Х	Х	B ⁽³⁾
L	L	L	\uparrow	L	L
L	L	L	\uparrow	Н	Н
L	L	L	L	Х	B ⁽³⁾
L	L	L	Н	Х	B ⁽⁴⁾

NOTES:

1. H = HIGH Voltage Level

X = Don't Care

L = LOW Voltage Level

Z = High-Impedance

 \uparrow = LOW-to-HIGH transition

2. A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\text{OEBA}},$ LEBA, CLKBA, and $\overline{\text{CLKENBA}}.$

3. Output level before the indicated steady-state input conditions were established.

 Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test C	onditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	-	_	V
		Vcc = 2.7V to 3.6V		2	-	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		—	—	0.8	
Ін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	-	-	±5	μA
lı∟							
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	—	-	±10	μA
Iozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	VCC = 0V, VIN or VO ≤ 5.5 V		-	-	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		—	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	-	-	10	μA
Іссн Іссz			$3.6 \le VIN \le 5.5V^{(2)}$		_	10	
Δ ICC	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		-	-	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	—	—	μA
IBHL			VI = 0.8V	75	—	—	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	—	—	_	μA
IBHL			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	—	±500	μA
Івніо							

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = - 6mA	2		
		Vcc = 2.3V	Іон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	—	
		Vcc = 3V		2.4	—	
		Vcc = 3V	Iон = - 24mA	2	—	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
			IOL = 12mA	—	0.7	
		Vcc = 2.7V	IOL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

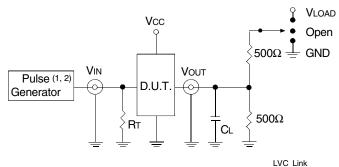
Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz		pF
Cpd	Power Dissipation Capacitance per Transceiver Outputs disabled			

SWITCHING CHARACTERISTICS⁽¹⁾

			Vcc :	Vcc = 2.7V		Vcc = 3.3V ± 0.3V	
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay		_	5.4	_	4.6	ns
t PHL	Ax to Bx or Bx to Ax						
t PLH	Propagation Delay		—	6.2	_	5.2	ns
t PHL	LEBA to Ax, LEAB to Bx						
t PLH	Propagation Delay		—	6.3	—	5.3	ns
t PHL	CLKBA to Ax, CLKAB to Bx						
tpzh	Output Enable Time		—	6.8	_	5.6	ns
tPZL	OEBA to Ax, OEAB to Bx						
tPHZ	Output Disable Time		—	6	_	5.2	ns
tPLZ	OEBA to Ax, OEAB to Bx						
tsu	Set-up Time HIGH or LOW		1.5	—	1.5	_	ns
	Ax to CLKAB, Bx to CLKBA						
ťH	Hold Time HIGH or LOW		0.8	—	0.8	—	ns
	Ax to CLKAB, Bx to CLKBA						
tsu	Set-up Time HIGH or LOW	Clock LOW	1	_	1	_	ns
	Ax to LEAB, Bx to LEBA	Clock HIGH	1	_	1	—]
tsu	Set-up Time, CLKENAB to CLKA	B	2.1	—	2.1	_	ns
tsu	Set-up Time, CLKENBA to CLKB	A	2.1	—	2.1	—	ns
tH	Hold Time HIGH or LOW		1.8	_	1.8	—	ns
	Ax after LEAB, Bx after LEBA						
tΗ	Hold Time, CLKENAB after CLKAB		0.5	—	0.5	_	ns
tΗ	Hold Time, CLKENBA after CLKBA		0.5	_	0.5	—	ns
tw	LEAB or LEBA Pulse Width HIGH		3	—	3	—	ns
tw	CLKAB or CLKBA Pulse Width H	IIGH or LOW	3	—	3	_	ns
tsk(o)	Output Skew ⁽²⁾		—	—		500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVCH16601A 3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER

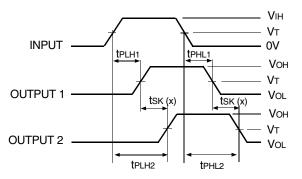
INDUSTRIALTEMPERATURERANGE

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
Vload	6	6	2 x Vcc	V
Vін	2.7	2.7	Vcc	V
Vт	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
Vнz	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

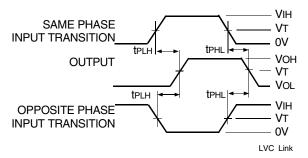
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

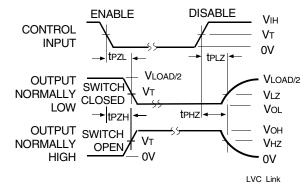
 $\mathsf{R} \tau$ = Termination resistance: should be equal to $\mathsf{Z} \mathsf{o} \mathsf{u} \tau$ of the Pulse Generator. NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2.513, tr \leq 2.51 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2ns.

3WITCH F03ITION				
Test	Switch			
Open Drain Disable Low Enable Low	VLOAD			
Disable High Enable High	GND			
All Other Tests	Open			

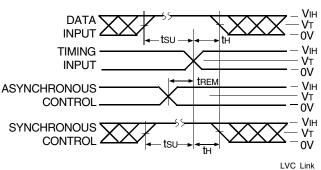

tsk(x) = |tplH2 - tplH1| or |tpHL2 - tpHL1|

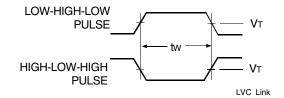
LVC Link


Output Skew - tsk(x)

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.




Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

Pulse Width

ORDERINGINFORMATION

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com