

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS 16-BIT BUS
TRANSCEIVER/REGISTER
WITH 3-STATE OUTPUTS,
5 VOLT TOLERANT I/O ANI

IDT74LVCH16646A
NOT RECOMMENDED
FOR NEW DESIGNS

5 VOLT TOLERANT I/O AND BUS-HOLD

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4 W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- Available in TSSOP package

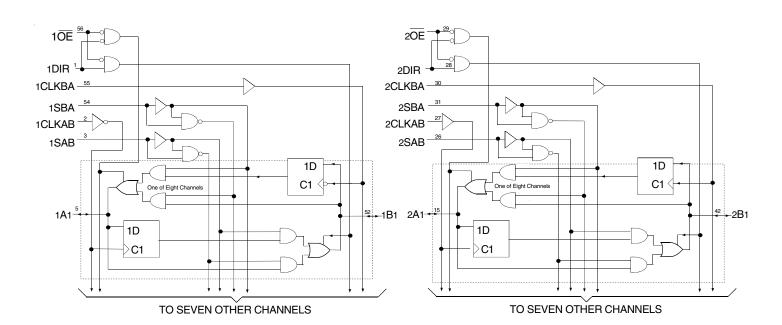
DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

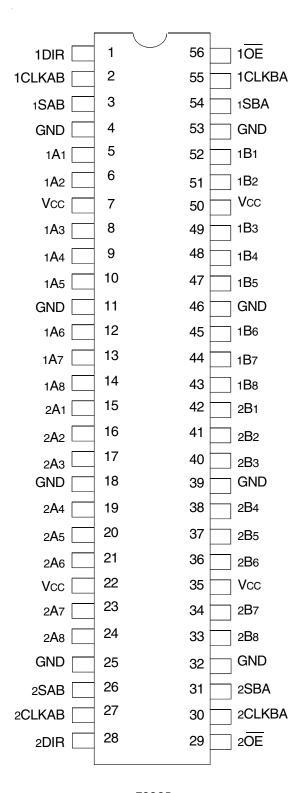

The LVCH16646A 16-bit bus transceiver and register is built using advanced dual metal CMOS technology. This high-speed, low power device is organized as two independent 8-bit D-type transceivers with 3-state D-type registers. The controls circuitry is organized for multiplexed transmission of data between A bus and B bus either directly or from the internal storage registers. Each 8-bit transceiver/register features direction control (DIR), over-riding Output Enable control ($\overline{\text{OE}}$) and Select lines (SAB and SBA) to select either real-time data or stored data. Separate clock inputs are provided for A and B port registers. Data on the A or B data bus, or both, can be stored in the internal registers by the low-to-high transitions at the appropriate clock pins. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16646A has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16646A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JANUARY 2016

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	рF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
xAx	Data Register A Inputs ⁽¹⁾
	Data Register B Outputs
xBx	Data Register B Inputs ⁽¹⁾
	Data Register A Outputs
xCLKAB, xCLKBA	Clock Pulse Inputs
xSAB, xSBA	Output Data Source Select Inputs
xŌĒ	Output Enable Inputs
xDIR	Direction Control Inputs

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

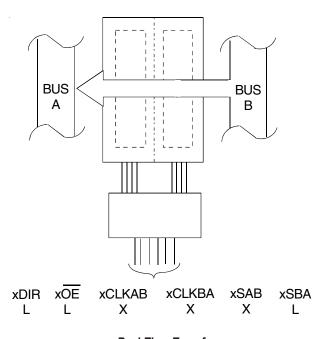
FUNCTION TABLE(1)

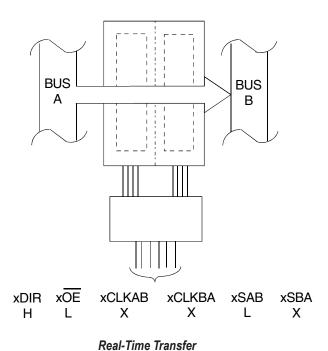
	Inputs					Data	1/O ⁽²⁾	
xŌĒ	xDIR	xCLKAB	xCLKBA	xSAB	xSBA	хАх	хВх	Operation or Function
Х	Х	1	Χ	Х	Х	Input	Unspecified	Store A, B unspecified(2)
Х	Χ	Χ	↑	Χ	Х	Unspecified	Input	Store B, A unspecified(2)
Н	Х	↑	↑	Х	Х	Input	Input	Store A and B data
Н	Χ	H or L	H or L	Χ	Х	Input	Input	Isolation, hold storage
L	L	Χ	Χ	Х	L	Output	Input	Real time B data to A bus
L	L	Χ	H or L	Χ	Н	Output	Input	Stored B data to A bus
L	Н	Χ	Χ	Ĺ	Х	Input	Output	Real time A data to B bus
L	Н	H or L	Х	Н	Х	Input	Output	Stored A data to B bus

NOTES:

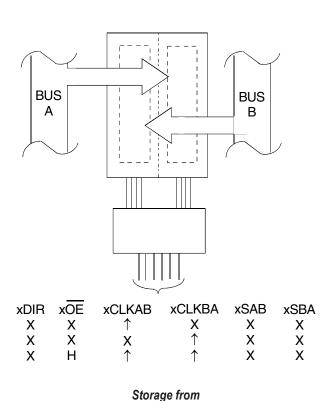
- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - ↑ = LOW-to-HIGH transition
- 2. The data output functions may be enabled or disabled by various signals at the xOE or xDIR inputs. Data input functions are always enabled, i.e. data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

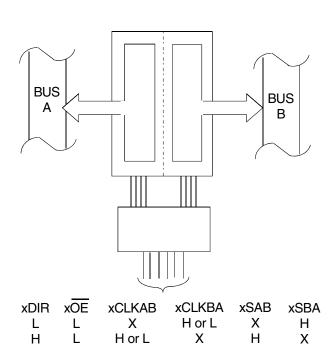

Following Conditions Apply Unless Otherwise Specified:


Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Test Cond	litions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μΑ
lıL							
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$Vcc = 0V$, $Vin or Vo \le 5.5V$		_	_	±50	μΑ
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		-	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	_	10	μΑ
ICCH ICCZ			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μΑ


NOTES

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.



Real-Time Transfer Bus B to A

A, B, or A and B

Bus A to B

Transfer Stored
Data to A and/or B

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	_	_	μΑ
IBHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μΑ
IBHL			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	Vı = 0 to 3.6V	_	_	±500	μΑ
Івньо							

NOTES

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = -6mA	2	_	
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	1	2.4	_	•
		Vcc = 3V	Iон = - 24mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, Ta = 25°C

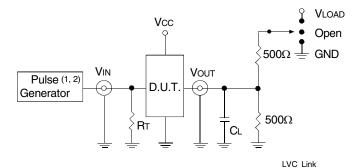
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz	60	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled		12	

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.

TA = - 40°C to + 85°C.

SWITCHING CHARACTERISTICS(1)

			= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
fMAX		150	_	150	_	MHz
t PLH	Propagation Delay		6.8	1.3	5.7	ns
tPHL	xAx to xBx or xBx to xAx					
t PLH	Propagation Delay		7.9	1.8	6.7	ns
tPHL	xCLKBA or xCLKAB to xAx or xBx					
t PLH	Propagation Delay		9.2	1.7	7.7	ns
t PHL	xSBA or xSAB to xAx or xBx					
t PZH	Output Enable Time		8.5	1.3	6.9	ns
tPZL	x OE to xAx or Bx					
tpzh	Output Enable Time		8.5	1.4	7.2	ns
tPZL	xDIR to xAx or Bx					
tpHZ	Output Disable Time		7.7	2.1	6.9	ns
tPLZ	x OE to xAx or Bx					
t PHZ	Output Disable Time		7.8	2	7	ns
tPLZ	xDIR to xAx or Bx					
tsu	Set-up Time	3.2	_	2.9	_	ns
	xAx or xBx before CLKAB↑ or CLKBA↑					
tΗ	Hold Time	0	_	0.3	_	ns
	xAx or xBx after CLKAB↑ or CLKBA↑					
tw	Pulse Duration, CLK HIGH or LOW	3.3	_	3.3	_	ns
tsk(o)	Output Skew ⁽²⁾		-	_	500	ps


NOTES:

^{1.} See TEST CIRCUITS AND WAVEFORMS. TA = -40°C to + 85°C.

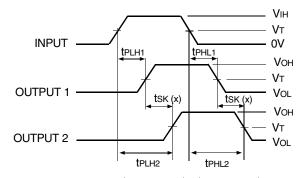
^{2.} Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

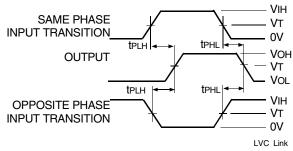

CL = Load capacitance: includes jig and probe capacitance.

 $\mbox{\it RT}$ = Termination resistance: should be equal to $\mbox{\it ZOUT}$ of the Pulse Generator. $\mbox{\it NOTES}$:

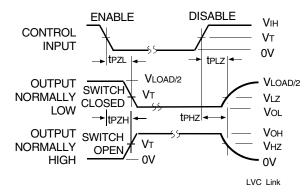
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

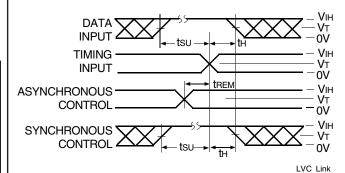


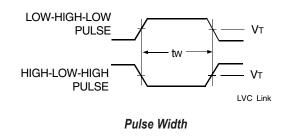
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


Output Skew - tsk(x)

NOTES:

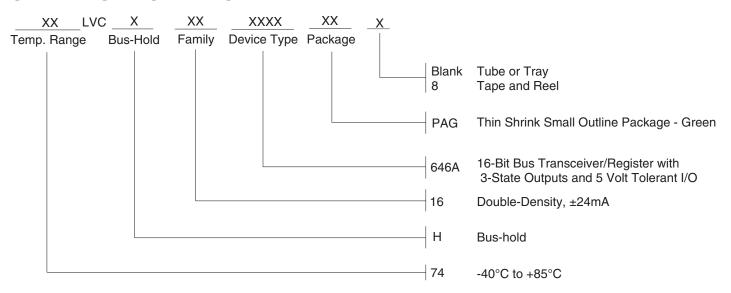
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

LVC Link

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

Pg. 1, 2, 8 Updated the ordering information by removing IDT notation, non RoHS parts and adding Tape and Reel information. 01/28/2016

6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com