imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual supply translating transceiver; 3-state

Rev. 2 — 30 May 2016

Product data sheet

1. General description

The 74LVC1T45-Q100; 74LVCH1T45-Q100 are single bit, dual supply transceivers with 3-state outputs that enable bidirectional level translation. They feature two 1-bit input-output ports (A and B), a direction control input (DIR) and dual supply pins (V_{CC(A)} and V_{CC(B)}). Both V_{CC(A)} and V_{CC(B)} can be supplied with any voltage between 1.2 V and 5.5 V. This flexibility makes the device suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V). Pins A and DIR are referenced to V_{CC(A)} and pin B is referenced to V_{CC(B)}. A HIGH on DIR allows transmission from A to B and a LOW on DIR allows transmission from B to A.

The devices are fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either V_{CC(A)} or V_{CC(B)} are at GND level, both A port and B port are in the high-impedance OFF-state.

Active bus hold circuitry in the 74LVCH1T45-Q100 holds unused or floating data inputs at a valid logic level.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Wide supply voltage range:
 - V_{CC(A)}: 1.2 V to 5.5 V
 - V_{CC(B)}: 1.2 V to 5.5 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - ◆ JESD8C (2.7 V to 3.6 V)
 - JESD36 (4.5 V to 5.5 V)
- ESD protection:
 - MIL-STD-883, method 3015 Class 3A exceeds 4000 V
 - HBM JESD22-A114F Class 3A exceeds 4000 V

nexperia

Dual supply translating transceiver; 3-state

- Maximum data rates:
 - 420 Mbps (3.3 V to 5.0 V translation)
 - 210 Mbps (translate to 3.3 V))
 - 140 Mbps (translate to 2.5 V)
 - ◆ 75 Mbps (translate to 1.8 V)
 - ◆ 60 Mbps (translate to 1.5 V)
- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- ± 24 mA output drive (V_{CC} = 3.0 V)
- Inputs accept voltages up to 5.5 V
- Low power consumption: 16 μA maximum I_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options

3. Ordering information

Table 1.Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74LVC1T45GW-Q100	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363					
74LVCH1T45GW-Q100]								

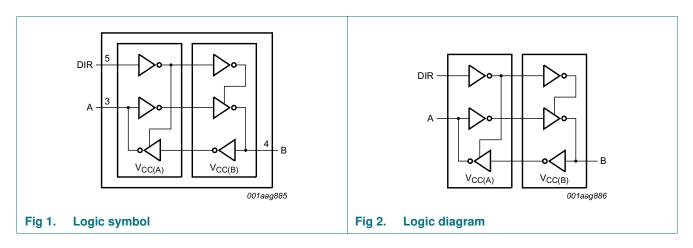
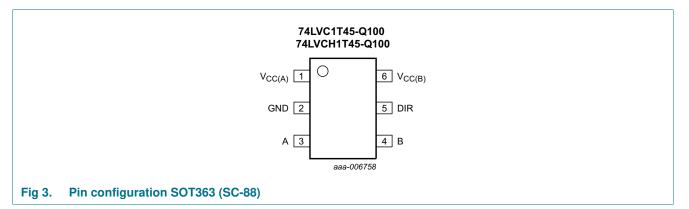

4. Marking

Table 2. Marking

Type number	Marking code ^[1]
74LVC1T45GW-Q100	V5
74LVCH1T45GW-Q100	X5

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram


All information provided in this document is subject to legal disclaimers

74LVC LVCH1T45 Q100

Dual supply translating transceiver; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. **Pin description** Symbol Pin Description 1 supply voltage port A and DIR V_{CC(A)} GND 2 ground (0 V) A 3 data input or output В 4 data input or output DIR 5 direction control 6 supply voltage port B V_{CC(B)}

7. Functional description

Table 4. Function table^[1]

Supply voltage	Input	Input/output ^[2]			
V _{CC(A)} , V _{CC(B)}	DIR	Α	В		
1.2 V to 5.5 V	L	A = B	input		
1.2 V to 5.5 V	Н	input	B = A		
GND ^[3]	Х	Z	Z		

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] The input circuit of the data I/O is always active.

[3] When either $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

Dual supply translating transceiver; 3-state

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(A)}	supply voltage A			-0.5	+6.5	V
V _{CC(B)}	supply voltage B			-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+6.5	V
l _{ок}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode	[1][2][3]	-0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	[1]	-0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CCO}	[2]	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}		-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	<u>[4]</u>	-	250	mW

[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output port.

[3] V_{CCO} + 0.5 V should not exceed 6.5 V.

[4] For SC-88 package: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CC(A)}	supply voltage A		1.2	5.5	V	
V _{CC(B)}	supply voltage B		1.2	5.5	V	
VI	input voltage		0	5.5	V	
Vo	output voltage	Active mode [1]	0	V _{cco}	V	
		Suspend or 3-state mode	0	5.5	V	
T _{amb}	ambient temperature		-40	+125	°C	
$\Delta t / \Delta V$	input transition rise and fall rate	V _{CCI} = 1.2 V [2]	-	20	ns/V	
		V _{CCI} = 1.4 V to 1.95 V	-	20	ns/V	
		V _{CCI} = 2.3 V to 2.7 V	-	20	ns/V	
		V _{CCI} = 3 V to 3.6 V	-	10	ns/V	
		V _{CCI} = 4.5 V to 5.5 V	-	5	ns/V	

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the input port.

Dual supply translating transceiver; 3-state

10. Static characteristics

Table 7. Typical static characteristics at T_{amb} = 25 °C

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$					
		$I_{O} = -3 \text{ mA}; V_{CCO} = 1.2 \text{ V}$	[1]	-	1.09	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$					
		$I_{O} = 3 \text{ mA}; V_{CCO} = 1.2 \text{ V}$	<u>[1]</u>	-	0.07	-	V
l _l	input leakage current	DIR input; $V_1 = 0 V$ to 5.5 V; $V_{CCI} = 1.2 V$ to 5.5 V	[2]	-	-	±1	μA
I _{BHL}	bus hold LOW current	A or B port; $V_I = 0.42$ V; $V_{CCI} = 1.2$ V	[2]	-	19	-	μA
I _{BHH}	bus hold HIGH current	A or B port; $V_I = 0.78$ V; $V_{CCI} = 1.2$ V	[2]	-	–19	-	μA
I _{BHLO}	bus hold LOW overdrive current	A or B port; V _{CCI} = 1.2 V	[2][3]	-	19	-	μA
I _{BHHO}	bus hold HIGH overdrive current	A or B port; $V_{CCI} = 1.2 V$	<u>[2][3]</u>	-	-19	-	μA
I _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CCO} = 1.2$ V to 5.5 V	[1]	-	-	±1	μA
I _{OFF}	power-off leakage current	A port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(A)} = 0 V; V _{CC(B)} = 1.2 V to 5.5 V		-	-	±1	μA
		B port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 1.2 V to 5.5 V		-	-	±1	μA
CI	input capacitance	$ \begin{array}{l} \text{DIR input; V_{I}=0 \ V \ or \ 3.3 \ V;} \\ \text{V}_{\text{CC}(\text{A})}=\text{V}_{\text{CC}(\text{B})}=3.3 \ \text{V} \end{array} $		-	2.2	-	pF
C _{I/O}	input/output capacitance	A and B port; suspend mode; $V_O = 3.3 \text{ V or } 0 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$		-	6.0	-	pF

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

[3] To guarantee the node switches, an external driver must source/sink at least IBHLO/IBHHO when the input is in the range VIL to VIH.

Dual supply translating transceiver; 3-state

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C te	o +85 °C	–40 °C to) +125 °C	Unit
			Min	Max	Min	Max	
V _{IH}	HIGH-level	data input					
	input voltage	V _{CCI} = 1.2 V	0.8V _{CCI}	-	0.8V _{CCI}	-	V
		V _{CCI} = 1.4 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.7	-	1.7	-	V
		V _{CCI} = 3.0 V to 3.6 V	2.0	-	2.0	-	V
		V _{CCI} = 4.5 V to 5.5 V	0.7V _{CCI}	-	0.7V _{CCI}	-	V
		DIR input					
		V _{CCI} = 1.2 V	0.8V _{CC(A)}	-	0.8V _{CC(A)}	-	V
		V _{CCI} = 1.4 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.7	-	1.7	-	V
		V _{CCI} = 3.0 V to 3.6 V	2.0	-	2.0	-	V
		V _{CCI} = 4.5 V to 5.5 V	0.7V _{CC(A)}	-	0.7V _{CC(A)}	-	V
V _{IL}	LOW-level	data input [1]					
	input voltage	V _{CCI} = 1.2 V	-	0.2V _{CCI}	-	0.2V _{CCI}	V
		V _{CCI} = 1.4 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
		V _{CCI} = 4.5 V to 5.5 V	-	0.3V _{CCI}	-	0.3V _{CCI}	V
		DIR input					
		V _{CCI} = 1.2 V	-	0.2V _{CC(A)}	-	0.2V _{CC(A)}	V
		V _{CCI} = 1.4 V to 1.95 V	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
		V _{CCI} = 4.5 V to 5.5 V	-	0.3V _{CC(A)}	-	0.3V _{CC(A)}	V
V _{OH}	HIGH-level	$V_I = V_{IH}$					
	output voltage	$I_{O} = -100 \ \mu\text{A}; \equal 12 \ V_{CCO} = 1.2 \ V \ to \ 4.5 \ V \ V \ Local{eq:V_CCO}$	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		$I_{O} = -6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$	1.0	-	1.0	-	V
		$I_{O} = -8 \text{ mA}; V_{CCO} = 1.65 \text{ V}$	1.2	-	1.2	-	V
		$I_{O} = -12 \text{ mA}; V_{CCO} = 2.3 \text{ V}$	1.9	-	1.9	-	V
		$I_{O} = -24 \text{ mA}; V_{CCO} = 3.0 \text{ V}$	2.4	-	2.4	-	V
		I _O = -32 mA; V _{CCO} = 4.5 V	3.8	-	3.8	-	V

Dual supply translating transceiver; 3-state

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	_40 °C t	o +85 °C	–40 °C to	+125 °C	Unit
			Min	Max	Min	Мах	
V _{OL}	LOW-level	V _I = V _{IL} [2]					
	output voltage	I _O = 100 μA; V _{CCO} = 1.2 V to 4.5 V	-	0.1	-	0.1	V
		$I_0 = 6 \text{ mA}; V_{CCO} = 1.4 \text{ V}$	-	0.3	-	0.3	V
		$I_{O} = 8 \text{ mA}; V_{CCO} = 1.65 \text{ V}$	-	0.45	-	0.45	V
		$I_{O} = 12 \text{ mA}; V_{CCO} = 2.3 \text{ V}$	-	0.3	-	0.3	V
		$I_{O} = 24 \text{ mA}; V_{CCO} = 3.0 \text{ V}$	-	0.55	-	0.55	V
		$I_{O} = 32 \text{ mA}; V_{CCO} = 4.5 \text{ V}$	-	0.55	-	0.55	V
I	input leakage current	DIR input; V _I = 0 V to 5.5 V; V _{CCI} = 1.2 V to 5.5 V	-	±2	-	±10	μA
I _{BHL}	bus hold LOW	A or B port [1]					
	current	$V_{I} = 0.49 \text{ V}; V_{CCI} = 1.4 \text{ V}$	15	-	10	-	μA
		V _I = 0.58 V; V _{CCI} = 1.65 V	25	-	20	-	μA
		$V_{I} = 0.70 \text{ V}; V_{CCI} = 2.3 \text{ V}$	45	-	45	-	μA
		$V_{I} = 0.80 \text{ V}; V_{CCI} = 3.0 \text{ V}$	100	-	80	-	μA
		$V_{I} = 1.35 \text{ V}; V_{CCI} = 4.5 \text{ V}$	100	-	100	-	μA
I _{BHH}	bus hold HIGH	A or B port					
	current	$V_{I} = 0.91 \text{ V}; V_{CCI} = 1.4 \text{ V}$	-15	-	-10	-	μA
		V _I = 1.07 V; V _{CCI} = 1.65 V	-25	-	-20	-	μA
		V _I = 1.60 V; V _{CCI} = 2.3 V	-45	-	-45	-	μA
		$V_{I} = 2.00 \text{ V}; V_{CCI} = 3.0 \text{ V}$	-100	-	-80	-	μA
		$V_{I} = 3.15 \text{ V}; V_{CCI} = 4.5 \text{ V}$	-100	-	-100	-	μA
I _{BHLO}	bus hold LOW	A or B port [1][3]					
	overdrive current	V _{CCI} = 1.6 V	125	-	125	-	μA
	current	V _{CCI} = 1.95 V	200	-	200	-	μA
		V _{CCI} = 2.7 V	300	-	300	-	μA
		V _{CCI} = 3.6 V	500	-	500	-	μA
		V _{CCI} = 5.5 V	900	-	900	-	μA
I _{BHHO}	bus hold HIGH	A or B port [1][3]					
	overdrive	V _{CCI} = 1.6 V	-125	-	-125	-	μA
	current	V _{CCI} = 1.95 V	-200	-	-200	-	μA
		V _{CCI} = 2.7 V	-300	-	-300	-	μA
		V _{CCI} = 3.6 V	-500	-	-500	-	μA
		V _{CCI} = 5.5 V	-900	-	-900	-	μA
l _{oz}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; [2] $V_{CCO} = 1.2$ V to 5.5 V	-	±2	-	±10	μA

Dual supply translating transceiver; 3-state

Unit

μΑ

μA

μA

μA

μA

μA

μA

μA

μA

μA

μΑ

μA

μΑ

uΑ

μA

Symbol Parameter Conditions -40 °C to +85 °C -40 °C to +125 °C Min Max Min Max power-off A port; V_1 or $V_0 = 0$ V to 5.5 V; ±2 ± 10 **I**OFF leakage $V_{CC(A)} = 0 V;$ V_{CC(B)} = 1.2 V to 5.5 V current B port; V_1 or $V_0 = 0$ V to 5.5 V; +2±10 _ _ $V_{CC(B)} = 0 V;$ V_{CC(A)} = 1.2 V to 5.5 V A port; $V_1 = 0$ V or V_{CCI} ; $I_0 = 0$ A [1] Icc supply current $V_{CC(A)}, V_{CC(B)} = 1.2 \text{ V to } 5.5 \text{ V}$ _ 8 _ 8 $V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V 3 3 _ - $V_{CC(A)} = 5.5 \text{ V}; V_{CC(B)} = 0 \text{ V}$ 2 2 -- $V_{CC(A)} = 0 V; V_{CC(B)} = 5.5 V$ -2 -2 _ _ B port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A $V_{CC(A)}, V_{CC(B)} = 1.2 \text{ V to } 5.5 \text{ V}$ 8 8 -- $V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V 3 _ _ 3 $V_{CC(B)} = 5.5 \text{ V}; V_{CC(A)} = 0 \text{ V}$ 2 2 -- $V_{CC(B)} = 0 V; V_{CC(A)} = 5.5 V$ -2 _ -2 _ A plus B port $(I_{CC(A)} + I_{CC(B)});$ $I_{O} = 0 A; V_{I} = 0 V \text{ or } V_{CCI}$ $V_{CC(A)}$, $V_{CC(B)} = 1.2$ V to 5.5 V 16 16 _ - $V_{CC(A)}$, $V_{CC(B)} = 1.65$ V to 5.5 V 4 4 -additional $V_{CC(A)}, V_{CC(B)} = 3.0 \text{ V to } 5.5 \text{ V}$ ΔI_{CC} supply current A port; A port at $V_{CC(A)} - 0.6 V$; [4] 75 50 _ _ DIR at V_{CC(A)}; B port = open DIR input; DIR at V_{CC(A)} – 0.6 V; 50 75 --A port at $V_{CC(A)}$ or GND; B port = open B port; B port at $V_{CC(B)} - 0.6 V$; [4] 50 75

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

[1] V_{CCI} is the supply voltage associated with the data input port.

DIR at GND; A port = open

[2] V_{CCO} is the supply voltage associated with the output port.

[3] To guarantee the node switches, an external driver must source/sink at least IBHLO/IBHHO when the input is in the range VIL to VIH.

[4] For non-bus hold parts only (74LVC1T45-Q100).

Dual supply translating transceiver; 3-state

11. Dynamic characteristics

Table 9. Typical dynamic characteristics at $V_{CC(A)} = 1.2$ V and $T_{amb} = 25$ °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6; for waveforms see Figure 4 and Figure 5

Symbol	Parameter	Conditions		V _{CC(B)}							
			1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V			
t _{PLH}	LOW to HIGH propagation delay	A to B		10.6	8.1	7.0	5.8	5.3	5.1	ns	
		B to A		10.6	9.5	9.0	8.5	8.3	8.2	ns	
-1116	HIGH to LOW propagation delay	A to B		10.1	7.1	6.0	5.3	5.2	5.4	ns	
		B to A		10.1	8.6	8.1	7.8	7.6	7.6	ns	
t _{PHZ}	HIGH to OFF-state propagation delay	DIR to A		9.4	9.4	9.4	9.4	9.4	9.4	ns	
		DIR to B		12.0	9.4	9.0	7.8	8.4	7.9	ns	
t _{PLZ}	LOW to OFF-state	DIR to A		7.1	7.1	7.1	7.1	7.1	7.1	ns	
	propagation delay	DIR to B		9.5	7.8	7.7	6.9	7.6	7.0	ns	
t _{PZH}	OFF-state to HIGH	DIR to A	[1]	20.1	17.3	16.7	15.4	15.9	15.2	ns	
	propagation delay	DIR to B	[1]	17.7	15.2	14.1	12.9	12.4	12.2	ns	
t _{PZL}	OFF-state to LOW	DIR to A	[1]	22.1	18.0	17.1	15.6	16.0	15.5	ns	
p	propagation delay	DIR to B	[1]	19.5	16.5	15.4	14.7	14.6	14.8	ns	

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

Table 10. Typical dynamic characteristics at $V_{CC(B)} = 1.2$ V and $T_{amb} = 25$ °C

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>; for waveforms see <u>Figure 4</u> and <u>Figure 5</u>

Symbol	Parameter	Conditions		V _{CC(A)}							
				1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	5.0 V		
t _{PLH}	LOW to HIGH	A to B		10.6	9.5	9.0	8.5	8.3	8.2	ns	
	propagation delay	B to A		10.6	8.1	7.0	5.8	5.3	5.1	ns	
t _{PHL}	PHL HIGH to LOW propagation delay	A to B		10.1	8.6	8.1	7.8	7.6	7.6	ns	
		B to A		10.1	7.1	6.0	5.3	5.2	5.4	ns	
-1112	HIGH to OFF-state	DIR to A		9.4	6.5	5.7	4.1	4.1	3.0	ns	
	propagation delay	DIR to B		12.0	6.1	5.4	4.6	4.3	4.0	ns	
t _{PLZ}	LOW to OFF-state	DIR to A		7.1	4.9	4.5	3.2	3.4	2.5	ns	
	propagation delay	DIR to B		9.5	7.3	6.6	5.9	5.7	5.6	ns	
t _{PZH}	OFF-state to HIGH	DIR to A	[1]	20.1	15.4	13.6	11.7	11.0	10.7	ns	
	propagation delay	DIR to B	[1]	17.7	14.4	13.5	11.7	11.7	10.7	ns	
t _{PZL}	OFF-state to LOW	DIR to A	[1]	22.1	13.2	11.4	9.9	9.5	9.4	ns	
	propagation delay	DIR to B	[1]	19.5	15.1	13.8	11.9	11.7	10.6	ns	

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

Dual supply translating transceiver; 3-state

Table 11.	Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \text{ °C} [1][2]$	
Voltages a	referenced to GND (around = $0 V$).	

Symbol	ymbol Parameter Conditions			$V_{CC(A)}$ and $V_{CC(B)}$					
			1.8 V	2.5 V	3.3 V	5.5 V			
C _{PD}	power dissipation capacitance	A port: (direction A to B); B port: (direction B to A)	2	3	3	4	pF		
		A port: (direction B to A); B port: (direction A to B)	15	16	16	18	pF		

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 $C_L = load capacitance in pF;$

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6; for wave forms see Figure 4 and Figure 5

Symbol	Parameter	Conditions					Vcc	;(B)					Unit
			1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V -	± 0.2 V	3.3 V -	± 0.3 V	5.0 V =	± 0.5 V	
			Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	
V _{CC(A)} =	1.4 V to 1.6 V	l											
t _{PLH}	LOW to HIGH	A to B	2.8	21.3	2.4	17.6	2.0	13.5	1.7	11.8	1.6	10.5	ns
	propagation delay	B to A	2.8	21.3	2.6	19.1	2.3	14.9	2.3	12.4	2.2	12.0	ns
t _{PHL}	HIGH to LOW	A to B	2.6	19.3	2.2	15.3	1.8	11.8	1.7	10.9	1.7	10.8	ns
	propagation delay	B to A	2.6	19.3	2.4	17.3	2.3	13.2	2.2	11.3	2.3	11.0	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	3.0	18.7	3.0	18.7	3.0	18.7	3.0	18.7	3.0	18.7	ns
	propagation delay	DIR to B	3.5	24.8	3.5	23.6	3.0	11.0	3.3	11.3	2.8	10.3	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.4	11.4	2.4	11.4	2.4	11.4	2.4	11.4	2.4	11.4	ns
	propagation delay	DIR to B	2.8	18.3	3.0	17.2	2.5	9.4	3.0	10.1	2.5	9.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A 🔟	-	39.6	-	36.3	-	24.3	-	22.5	-	21.4	ns
	propagation delay	DIR to B 🔟	-	32.7	-	29.0	-	24.9	-	23.2	-	21.9	ns
t _{PZL}	OFF-state to LOW	DIR to A 🔟	-	44.1	-	40.9	-	24.2	-	22.6	-	21.3	ns
	propagation delay	DIR to B 🔟	-	38.0	-	34.0	-	30.5	-	29.6	-	29.5	ns
V _{CC(A)} =	1.65 V to 1.95 V												
t _{PLH}	LOW to HIGH	A to B	2.6	19.1	2.2	17.7	2.2	9.3	1.7	7.2	1.4	6.8	ns
	propagation delay	B to A	2.4	17.6	2.2	17.7	2.3	16.0	2.1	15.5	1.9	15.1	ns
t _{PHL}	HIGH to LOW	A to B	2.4	17.3	2.0	14.3	1.6	8.5	1.8	7.1	1.7	7.0	ns
	propagation delay	B to A	2.2	15.3	2.0	14.3	2.1	12.9	2.0	12.6	1.8	12.2	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.9	17.1	2.9	17.1	2.9	17.1	2.9	17.1	2.9	17.1	ns
	propagation delay	DIR to B	3.2	24.1	3.2	21.9	2.7	11.5	3.0	10.3	2.5	8.2	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.4	10.5	2.4	10.5	2.4	10.5	2.4	10.5	2.4	10.5	ns
	propagation delay	DIR to B	2.5	17.6	2.6	16.0	2.2	9.2	2.7	8.4	2.4	6.4	ns

Dual supply translating transceiver; 3-state

Symbol	Parameter	Conditions	s					Vcc	:(B)					Unit
				1.5 V :	± 0.1 V	1.8 V ±	0.15 V			3.3 V :	E 0.3 V	5.0 V ±	± 0.5 V	
				Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{PZH}	OFF-state to HIGH	DIR to A	[1]	-	35.2	-	33.7	-	25.2	-	23.9	-	21.8	ns
	propagation delay	DIR to B	[1]	-	29.6	-	28.2	-	19.8	-	17.7	-	17.3	ns
t _{PZL}	OFF-state to LOW	DIR to A	[1]	-	39.4	-	36.2	-	24.4	-	22.9	-	20.4	ns
	propagation delay	DIR to B	[1]	-	34.4	-	31.4	-	25.6	-	24.2	-	24.1	ns
$V_{CC(A)} =$	2.3 V to 2.7 V													
t _{PLH}	LOW to HIGH	A to B		2.3	17.9	2.3	16.0	1.5	8.5	1.3	6.2	1.1	4.8	ns
	propagation delay	B to A		2.0	13.5	2.2	9.3	1.5	8.5	1.4	8.0	1.0	7.5	ns
t _{PHL}	HIGH to LOW	A to B		2.3	15.8	2.1	12.9	1.4	7.5	1.3	5.4	0.9	4.6	ns
	propagation delay	B to A		1.8	11.8	1.9	8.5	1.4	7.5	1.3	7.0	0.9	6.2	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		2.1	8.1	2.1	8.1	2.1	8.1	2.1	8.1	2.1	8.1	ns
	propagation delay	DIR to B		3.0	22.5	3.0	21.4	2.5	11.0	2.8	9.3	2.3	6.9	ns
t _{PLZ}	LOW to OFF-state	DIR to A		1.7	5.8	1.7	5.8	1.7	5.8	1.7	5.8	1.7	5.8	ns
	propagation delay	DIR to B		2.3	14.6	2.5	13.2	2.0	9.0	2.5	8.4	1.8	5.3	ns
t _{PZH}	OFF-state to HIGH		[1]	-	28.1	-	22.5	-	17.5	-	16.4	-	12.8	ns
1 211	propagation delay		[1]	-	23.7	-	21.8	-	14.3	-	12.0	-	10.6	ns
t _{PZL}	OFF-state to LOW		[1]	-	34.3	-	29.9	-	18.5	-	16.3	-	13.1	ns
1 22	propagation delay		[1]	-	23.9	-	21.0	-	15.6	-	13.5	-	12.7	ns
$V_{CC(A)} =$	3.0 V to 3.6 V													
t _{PLH}	LOW to HIGH	A to B		2.3	17.1	2.1	15.5	1.4	8.0	0.8	5.6	0.7	4.4	ns
	propagation delay	B to A		1.7	11.8	1.7	7.2	1.3	6.2	0.7	5.6	0.6	5.4	ns
t _{PHL}	HIGH to LOW	A to B		2.2	15.6	2.0	12.6	1.3	7.0	0.8	5.0	0.7	4.0	ns
	propagation delay	B to A		1.7	10.9	1.8	7.1	1.3	5.4	0.8	5.0	0.7	4.5	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		2.3	7.3	2.3	7.3	2.3	7.3	2.3	7.3	2.7	7.3	ns
	propagation delay	DIR to B		2.9	18.0	2.9	16.5	2.3	10.1	2.7	8.6	2.2	6.3	ns
t _{PLZ}	LOW to OFF-state	DIR to A		2.0	5.6	2.0	5.6	2.0	5.6	2.0	5.6	2.0	5.6	ns
	propagation delay	DIR to B		2.3	13.6	2.4	12.5	1.9	7.8	2.3	7.1	1.7	4.9	ns
t _{PZH}	OFF-state to HIGH		[1]	-	25.4	-	19.7	-	14.0	-	12.7	-	10.3	ns
. 2.1	propagation delay		[1]	-	22.7	-	21.1	-	13.6	-	11.2	-	10.0	ns
t _{PZL}	OFF-state to LOW		[1]	-	28.9	-	23.6	-	15.5	-	13.6	-	10.8	ns
-1 22	propagation delay		[1]	-	22.9	-	19.9	-	14.3	_	12.3	-	11.3	ns
$V_{CC(A)} = $	4.5 V to 5.5 V													
t _{PLH}	LOW to HIGH	A to B		2.2	16.6	1.9	15.1	1.0	7.5	0.7	5.4	0.5	3.9	ns
	propagation delay	B to A		1.6	10.5	1.4	6.8	1.0	4.8	0.7	4.4	0.5	3.9	ns
t _{PHL}	HIGH to LOW	A to B		2.3	15.3	1.8	12.2	1.0	6.2	0.7	4.5	0.5	3.5	ns
	propagation delay	B to A		1.7	10.8	1.7	7.0	0.9	4.6	0.7	4.0	0.5	3.5	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		1.7	5.4	1.7	5.4	1.7	5.4	1.7	5.4	1.7	5.4	ns
-1 1 1 🗠	propagation delay													

Table 12. Dynamic characteristics for temperature range –40 °C to +85 °C ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6; for wave forms see Figure 4 and Figure 5

All information provided in this document is subject to legal disclaimers.

Dual supply translating transceiver; 3-state

Table 12. Dynamic characteristics for temperature range –40 °C to +85 °C ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>; for wave forms see <u>Figure 4</u> and <u>Figure 5</u>

Symbol	Parameter	Conditions					Vcc	(B)				.9 3.7 .8 4.5 - 8.4 - 7.6 - 9.2		
			1.5 V ±	E 0.1 V	1.8 V ±	0.15 V	2.5 V ±	10.2 V	3.3 V ±	E 0.3 V	5.0 V ±	10.5 V		
			Min	Max	Min	Max	Min	Max	Min	Мах	Min	Мах		
t _{PLZ}	LOW to OFF-state	DIR to A	1.4	3.7	1.4	3.7	1.3	3.7	1.0	3.7	0.9	3.7	ns	
	propagation delay	DIR to B	2.3	13.1	2.4	12.1	1.9	7.4	2.3	7.0	1.8	4.5	ns	
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	23.6	-	18.9	-	12.2	-	11.4	-	8.4	ns	
	propagation delay	DIR to B [1]	-	20.3	-	18.8	-	11.2	-	9.1	-	7.6	ns	
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	28.1	-	23.1	-	14.3	-	12.0	-	9.2	ns	
	propagation delay	DIR to B [1]	-	20.7	-	17.6	-	11.6	-	9.9	-	8.9	ns	

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

Table 13. Dynamic characteristics for temperature range –40 °C to +125 °C

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6; for wave forms see Figure 4 and Figure 5

Symbol	Parameter	Conditions	V _{CC(B)}										Unit
			1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V ±	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	iv iv .6 ns .2 ns .9 ns .1 ns .6 ns .4 ns .6 ns .4 ns .6 ns .7 ns .7 ns .7 ns .5 ns .7 ns .5 ns .7 ns .9 ns
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
$V_{CC(A)} =$	1.4 V to 1.6 V												
t _{PLH}	LOW to HIGH	A to B	2.5	23.5	2.1	19.4	1.8	14.9	1.5	13.0	1.4	11.6	ns
	propagation delay	B to A	2.5	23.5	2.3	21.1	2.0	16.4	2.0	13.7	1.9	13.2	ns
t _{PHL}	HIGH to LOW	A to B	2.3	21.3	1.9	16.9	1.6	13.0	1.5	12.0	1.5	11.9	ns
	propagation delay	B to A	2.3	21.3	2.1	19.1	2.0	14.6	1.9	12.5	2.0	12.1	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.7	20.6	2.7	20.6	2.7	20.6	2.7	20.6	2.7	20.6	ns
	propagation delay	DIR to B	3.1	27.3	3.1	26.0	2.7	12.1	2.9	12.5	2.5	11.4	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.1	12.6	2.1	12.6	2.1	12.6	2.1	12.6	2.1	12.6	ns
	propagation delay	DIR to B	2.5	20.2	2.7	19.0	2.2	10.4	2.7	11.2	2.2	10.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	43.7	-	40.1	-	26.8	-	24.9	-	23.6	ns
	propagation delay	DIR to B [1]	-	36.1	-	32.0	-	27.5	-	25.6	-	24.2	ns
t _{PZL}	OFF-state to LOW	DIR to A [1]	-	48.6	-	45.1	-	26.7	-	25.0	-	23.5	ns
	propagation delay	DIR to B [1]	-	41.9	-	37.5	-	33.6	-	32.6	-	32.5	ns
V _{CC(A)} =	1.65 V to 1.95 V												
t _{PLH}	LOW to HIGH	A to B	2.3	21.1	1.9	19.5	1.9	10.3	1.5	8.0	1.2	7.5	ns
	propagation delay	B to A	2.1	19.4	1.9	19.5	2.0	17.6	1.8	17.1	1.7	16.7	ns
t _{PHL}	HIGH to LOW	A to B	2.1	19.1	1.8	15.8	1.4	9.4	1.6	7.9	1.5	7.7	ns
	propagation delay	B to A	1.9	16.9	1.8	15.8	1.8	14.2	1.8	13.9	1.6	13.5	ns
t _{PHZ}	HIGH to OFF-state	DIR to A	2.6	18.9	2.6	18.9	2.6	18.9	2.6	18.9	2.6	18.9	ns
	propagation delay	DIR to B	2.8	26.6	2.8	24.1	2.4	12.7	2.7	11.4	2.2	9.1	ns
t _{PLZ}	LOW to OFF-state	DIR to A	2.1	11.6	2.1	11.6	2.1	11.6	2.1	11.6	2.1	11.6	ns
	propagation delay	DIR to B	2.2	19.4	2.3	17.6	1.9	10.2	2.4	9.3	2.1	7.4	ns
t _{PZH}	OFF-state to HIGH	DIR to A [1]	-	38.8	-	37.1	-	27.8	-	26.4	-	24.1	ns
	propagation delay	DIR to B [1]	-	32.7	-	31.1	-	21.9	-	19.6	-	19.1	ns

74LVC_LVCH1T45_Q100

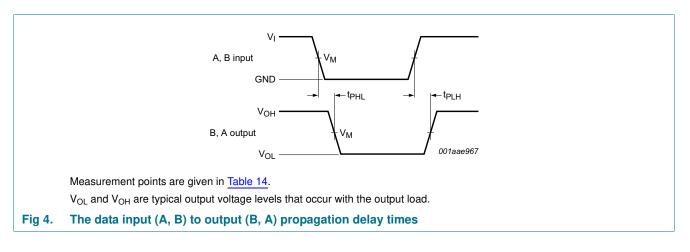
All information provided in this document is subject to legal disclaimers.

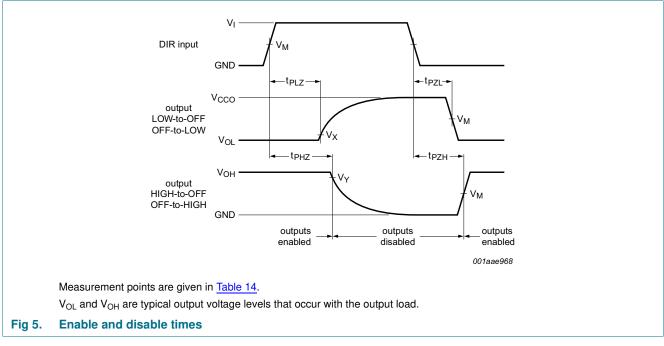
Dual supply translating transceiver; 3-state

-	are referenced to GN Parameter	Conditions		V _{CC(B)}										Unit
Symbol	Falametei	Conditions		1 5 1/1	011	1.8 V ±	0 1E V	1		2 2 V	0.2.1/	EOV		
			-										1	-
				Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{PZL}	OFF-state to LOW		1	-	43.5	-	39.9	-	26.9	-	25.3	-	22.6	ns
	propagation delay	DIR to B	[1]	-	38.0	-	34.7	-	28.3	-	26.8	-	26.6	ns
$V_{CC(A)} =$	2.3 V to 2.7 V													
t _{PLH}	LOW to HIGH	A to B		2.0	19.7	2.0	17.6	1.3	9.4	1.1	6.9	0.9	5.3	ns
	propagation delay	B to A		1.8	14.9	1.9	10.3	1.3	9.4	1.2	8.8	0.9	8.3	ns
t _{PHL}	HIGH to LOW	A to B		2.0	17.4	1.8	14.2	1.2	8.3	1.1	6.0	0.8	5.1	ns
	propagation delay	B to A		1.6	13.0	1.7	9.4	1.2	8.3	1.1	7.7	0.8	6.9	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		1.8	9.0	1.8	9.0	1.8	9.0	1.8	9.0	1.8	9.0	ns
	propagation delay	DIR to B		2.7	24.8	2.7	23.6	2.2	12.1	2.5	10.3	2.0	7.6	ns
t _{PLZ}	LOW to OFF-state	DIR to A		1.5	6.4	1.5	6.4	1.5	6.4	1.5	6.4	1.5	6.4	ns
	propagation delay	DIR to B		2.0	16.1	2.2	14.6	1.8	9.9	2.2	9.3	1.6	5.9	ns
t _{PZH}	OFF-state to HIGH	DIR to A	[1]	-	31.0	-	24.9	-	19.3	-	18.1	-	14.2	ns
	propagation delay		[1]	-	26.1	-	24.0	-	15.8	-	13.3	-	11.7	ns
t _{PZL}	OFF-state to LOW	DIR to A	[1]	-	37.8	-	33.0	-	20.4	-	18.0	-	14.5	ns
1 22	propagation delay		[1]	-	26.4	-	23.2	-	17.3	-	15.0	-	14.1	ns
$V_{CC(A)} =$	3.0 V to 3.6 V						_							
t _{PLH}	LOW to HIGH	A to B		2.0	18.9	1.8	17.1	1.2	8.8	0.7	6.2	0.6	4.9	ns
*FLN	propagation delay	B to A		1.5	13.0	1.5	8.0	1.1	6.9	0.6	6.2	0.5	6.0	ns
t _{PHL}	HIGH to LOW	A to B		1.9	17.2	1.8	13.9	1.1	7.7	0.7	5.5	0.6	4.4	ns
PHL	propagation delay	B to A		1.5	12.0	1.6	7.9	1.1	6.0	0.7	5.5	0.6	5.0	ns
touz	HIGH to OFF-state	DIR to A		2.0	8.1	2.0	8.1	2.0	8.1	2.0	8.1	2.4	8.1	ns
t _{PHZ}	propagation delay	DIR to B		2.6	19.8	2.6	18.2	2.0	11.2	2.4	9.5	1.9	7.0	ns
t	LOW to OFF-state	DIR to A		1.8	6.2	1.8	6.2	1.8	6.2	1.8	6.2	1.8	6.2	ns
t _{PLZ}	propagation delay	DIR to B		2.0	15.0	2.1	13.8	1.7	8.6	2.0	7.9	1.5	5.4	ns
+			[1]	-	28.0									
t _{PZH}	OFF-state to HIGH propagation delay		(<u>1</u>)	-		-	21.8	-	15.5	-	14.1	-	11.4	ns
					25.1	-	23.3		15.0		12.4	-	11.1	ns
t _{PZL}	OFF-state to LOW propagation delay		[<u>1]</u>	-	31.8	-	26.1	-	17.2	-	15.0	-	12.0	ns
		DIR to B	[1]	-	25.3	-	22.0	-	15.8	-	13.6	-	12.5	ns
	4.5 V to 5.5 V	A		1.0	10.0	. –	40-					.		
t _{PLH}	LOW to HIGH propagation delay	A to B		1.9	18.3	1.7	16.7	0.9	8.3	0.6	6.0	0.4	4.3	ns
		B to A		1.4	11.6	1.2	7.5	0.9	5.3	0.6	4.9	0.4	4.3	ns
t _{PHL}	HIGH to LOW	A to B		2.0	16.9	1.6	13.5	0.9	6.9	0.6	5.0	0.4	3.9	ns
	propagation delay	B to A		1.5	11.9	1.5	7.7	0.8	5.1	0.6	4.4	0.4	3.9	ns
t _{PHZ}	HIGH to OFF-state	DIR to A		1.5	6.0	1.5	6.0	1.5	6.0	1.5	6.0	1.5	6.0	ns
	propagation delay	DIR to B		2.6	19.1	2.6	17.8	2.0	10.7	2.4	8.8	2.2	6.3	ns
t _{PLZ}	LOW to OFF-state	DIR to A		1.2	4.1	1.2	4.1	1.1	4.1	0.9	4.1	0.8	4.1	ns
	propagation delay	DIR to B		2.0	14.5	2.1	13.4	1.7	8.2	2.0	7.7	1.6	5.0	ns

Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C ...continued

All information provided in this document is subject to legal disclaimers.


Dual supply translating transceiver; 3-state


Table 13. Dynamic characteristics for temperature range –40 °C to +125 °C ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6; for wave forms see Figure 4 and Figure 5

Symbol	Parameter	Conditions					Vcc	(B)			Unit		
			1.5 V ±	- 0.1 V	1.8 V ±	0.15 V	2.5 V ±	- 0.2 V	3.3 V ±	- 0.3 V	3 V 5.0 V ± 0.5 V		
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{PZH}	OFF-state to HIGH	DIR to A 🛄	-	26.1	-	20.9	-	13.5	-	12.6	-	9.3	ns
	propagation delay	DIR to B 🛄	-	22.4	-	20.8	-	12.4	-	10.1	-	8.4	ns
t _{PZL}	OFF-state to LOW	DIR to A 🛄	-	31.0	-	25.5	-	15.8	-	13.2	-	10.2	ns
	propagation delay	DIR to B 🛄	-	22.9	-	19.5	-	12.9	-	11.0	-	9.9	ns

[1] t_{PZH} and t_{PZL} are calculated values using the formula shown in Section 14.4 "Enable times"

12. Waveforms

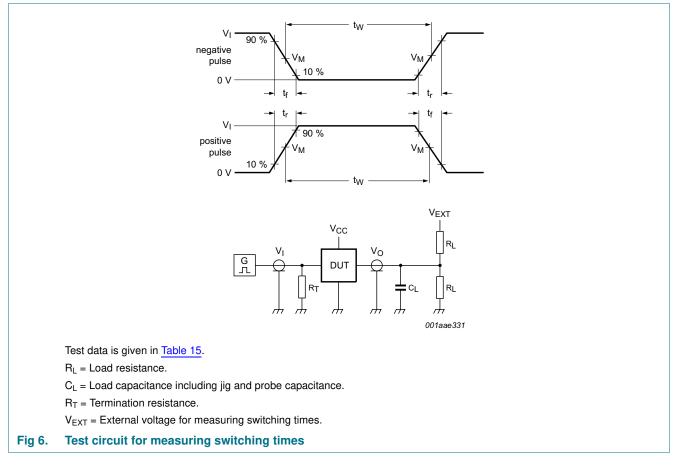

Dual supply translating transceiver; 3-state

Table 14. Measurement points

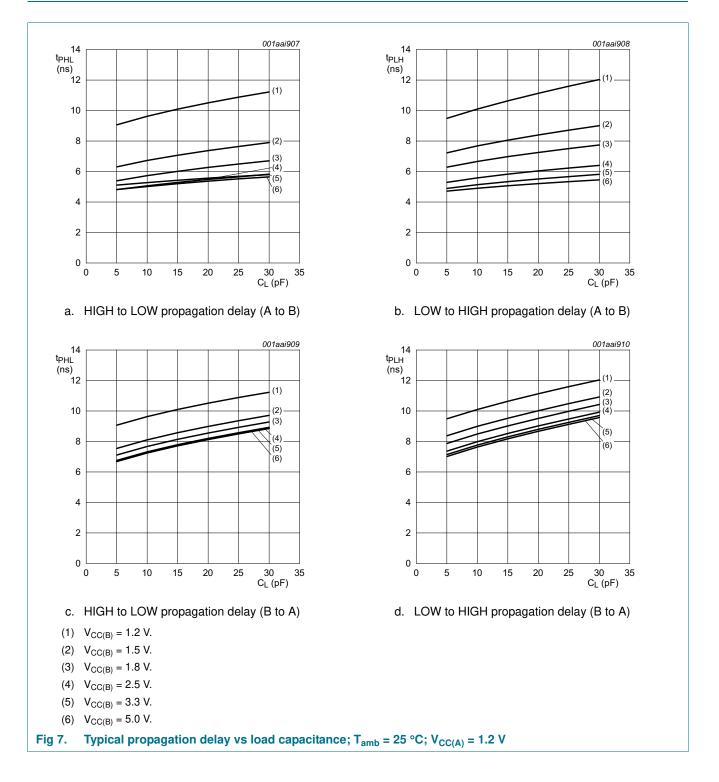
Supply voltage	Input ^[1]	Output ^[2]					
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y			
1.2 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V			
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
3.0 V to 5.5 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V			

[1] V_{CCI} is the supply voltage associated with the data input port.

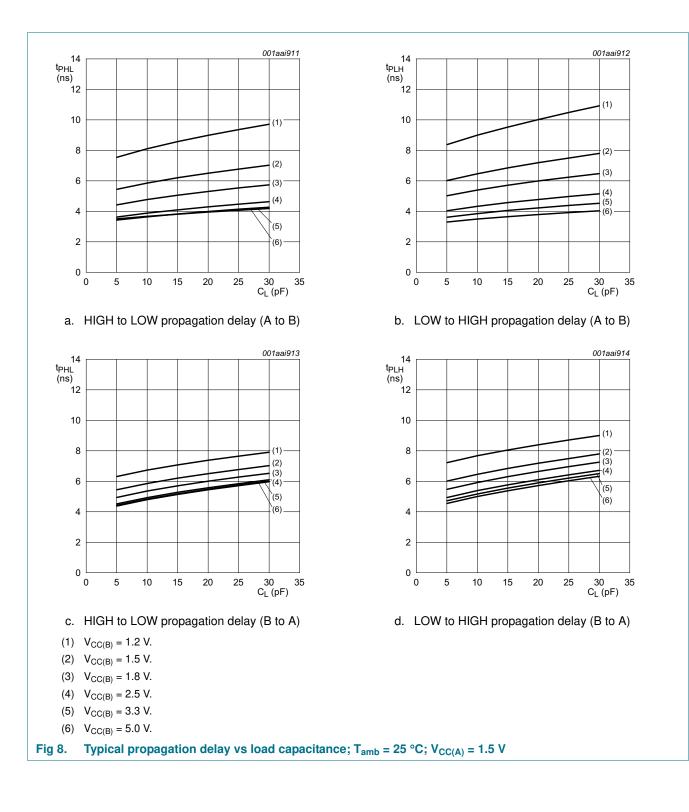
[2] $\ V_{CCO}$ is the supply voltage associated with the output port.

Table 15. Test data

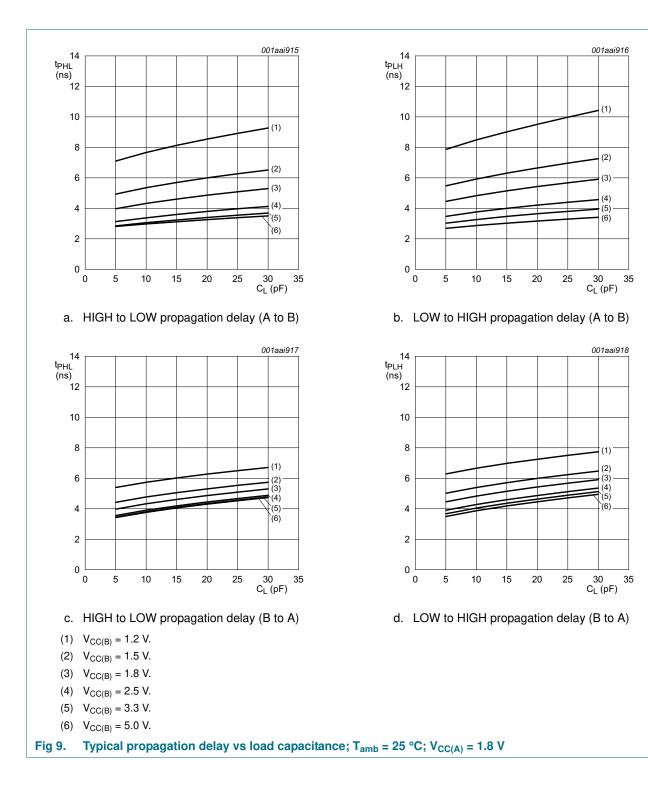
Supply voltage	Input		Load		V _{EXT}				
$V_{CC(A)}, V_{CC(B)}$	VI <mark>[1]</mark>	Δt/ΔV[2]	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]		
1.2 V to 5.5 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}		

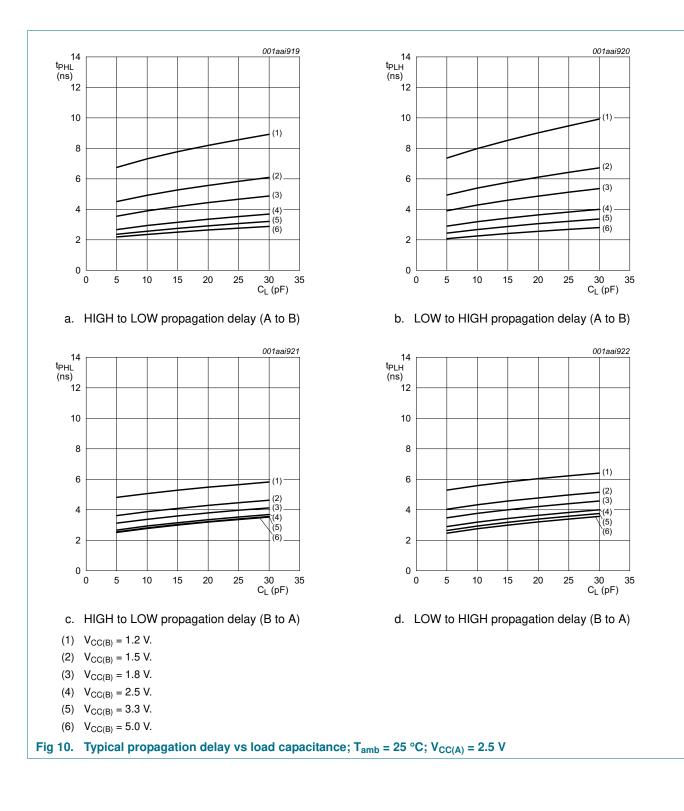

[1] V_{CCI} is the supply voltage associated with the data input port.

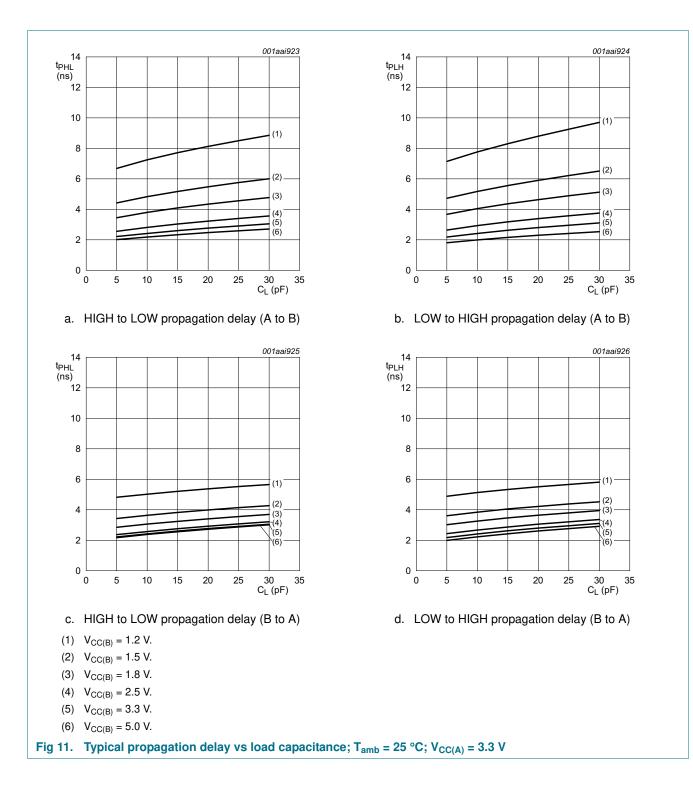
[2] $dV/dt \ge 1.0 V/ns$

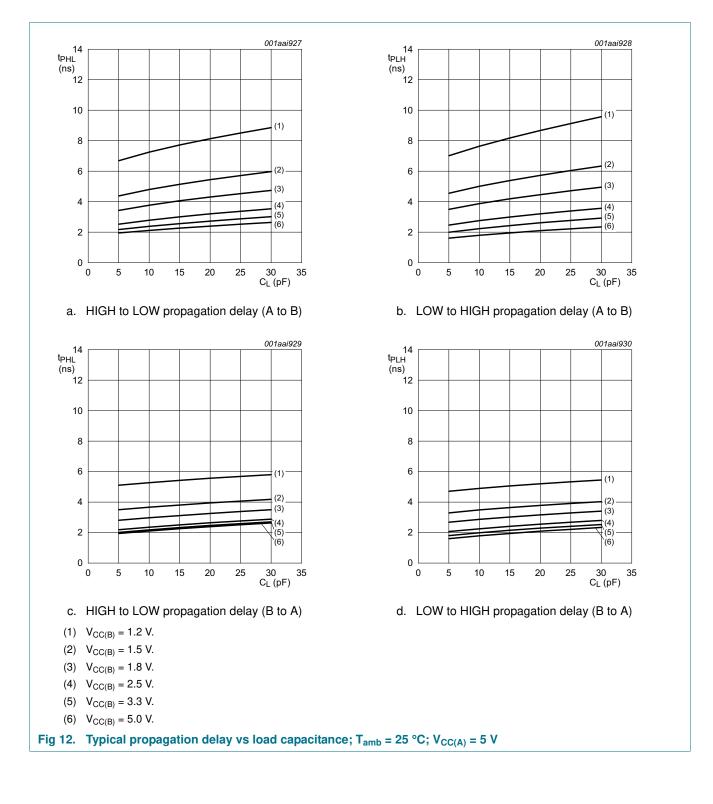

[3] V_{CCO} is the supply voltage associated with the output port.

Dual supply translating transceiver; 3-state


13. Typical propagation delay characteristics

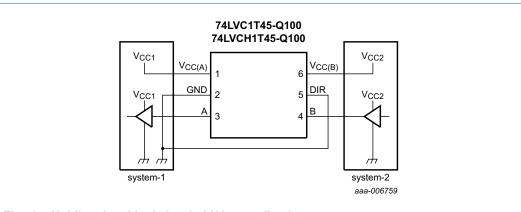

74LVC1T45-Q100; 74LVCH1T45-Q100


74LVC1T45-Q100; 74LVCH1T45-Q100


74LVC1T45-Q100; 74LVCH1T45-Q100

74LVC1T45-Q100; 74LVCH1T45-Q100

74LVC1T45-Q100; 74LVCH1T45-Q100



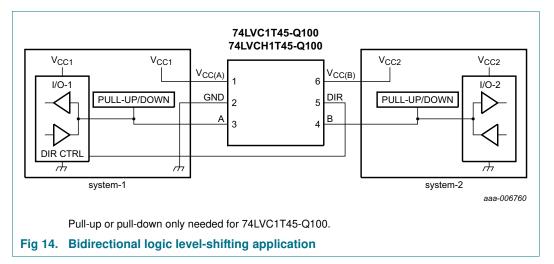
Dual supply translating transceiver; 3-state

14. Application information

14.1 Unidirectional logic level-shifting application

The circuit given in <u>Figure 13</u> is an example of the 74LVC1T45-Q100; 74LVCH1T45-Q100 being used in a unidirectional logic level-shifting application.

Fig 13. Unidirectional logic level-shifting application


Table 16.	Description un	idirectional logic	level-shifting application	
-----------	----------------	--------------------	----------------------------	--

Pin	Name	Function	Description
1	V _{CC(A)}	V _{CC1}	supply voltage of system-1 (1.2 V to 5.5 V)
2	GND	GND	device GND
3	A	OUT	output level depends on V_{CC1} voltage
4	В	IN	input threshold value depends on V_{CC2} voltage
5	DIR	DIR	the GND (LOW level) determines B port to A port direction
6	V _{CC(B)}	V _{CC2}	supply voltage of system-2 (1.2 V to 5.5 V)

Dual supply translating transceiver; 3-state

14.2 Bidirectional logic level-shifting application

<u>Figure 14</u> shows the 74LVC1T45-Q100; 74LVCH1T45-Q100 being used in a bidirectional logic level-shifting application. Since the device does not have an output enable pin, take precautions during design to avoid bus contention between system-1 and system-2 when changing directions.

<u>Table 17</u> provides a sequence that illustrates data transmission from system-1 to system-2 and then from system-2 to system-1.

State	DIR CTRL	I/O-1	I/O-2	Description
1	Н	output	input	system-1 data to system-2
2	Н	Z	Z	system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold.
3	L	Z	Z	DIR bit is set LOW. I/O-1 and I/O-2 are still disabled. The bus-line state depends on bus hold.
4	L	input	output	system-2 data to system-1

[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

Dual supply translating transceiver; 3-state

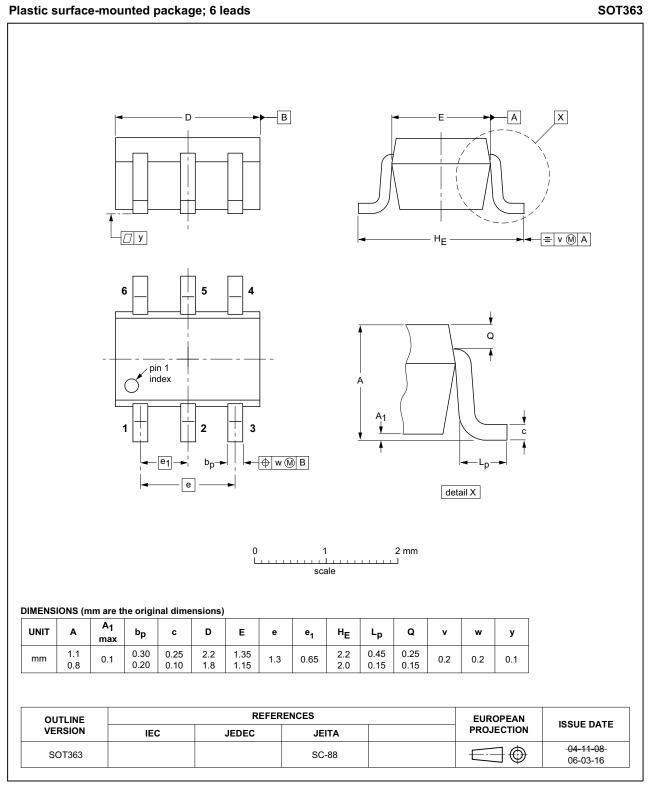
14.3 Power-up considerations

The device is designed such that no special power-up sequence is required other than GND being applied first.

V _{CC(A)}	V _{CC(B)}					Unit
	0 V	1.8 V	2.5 V	3.3 V	5.0 V	
0 V	0	< 1	< 1	< 1	< 1	μA
1.8 V	< 1	< 2	< 2	< 2	2	μA
2.5 V	< 1	< 2	< 2	< 2	< 2	μA
3.3 V	< 1	< 2	< 2	< 2	< 2	μA
5.0 V	< 1	2	< 2	< 2	< 2	μA

Table 18. Typical total supply current (I_{CC(A)} + I_{CC(B)})

14.4 Enable times


Calculate the enable times for the 74LVC1T45-Q100; 74LVCH1T45-Q100 using the following formulas:

- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the 74LVC1T45-Q100; 74LVCH1T45-Q100 initially transmits from A to B, the DIR bit is switched. In this situation, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

Dual supply translating transceiver; 3-state

15. Package outline

Fig 15. Package outline SOT363 (SC-88)

All information provided	n this document is subject t	o legal disclaimers.