

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

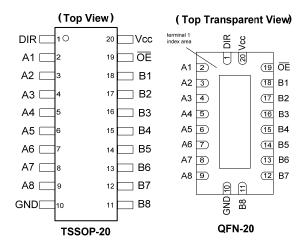
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

OCTAL BUS TRANSCEIVER WITH BUS HOLD / 3 STATE OUTPUTS

Description

The 74LVCH245A is an octal transceiver designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) pin can be used to disable the device so the buses effectively are isolated.

The device is designed for operation with a power supply range of 1.65V to 3.6V.


The inputs are tolerant to 5.5V allowing this device to be used in a mixed voltage environment. The device is fully specified for partial power down applications using I_{OFF}. The I_{OFF} circuitry disables the output preventing damaging current backflow when the device is powered down.

Bus hold circuitry holds unused or undriven inputs at a high or low logic state. The use of external pull-up or pull down resistors is not recommended.

Features

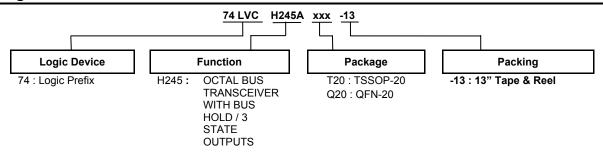
- Supply Voltage Range from 1.65V to 3.6V
- Sinks or Sources 24ma at V_{CC} = 3V
- **CMOS Low Power Consumption**
- I_{OFF} Supports Partial Power Down Operation
- Inputs or Outputs Accept Up to 5.5V
- Inputs Can Be Driven by 3.3V or 5V Allowing for Mixed Voltage
- Schmitt Trigger Action at All Inputs
- Typical V_{OLP} (Quiet Output Ground Bounce) Less Than 0.8V with V_{CC} = 3.3V and T_A = +25°C
- Typical V_{OHV} (Quiet Output dynamic VOH) Greater than 2.0V with V_{CC} = 3.3V and T_A = +25°C
- ESD Protection Tested per JESD 22
 - Exceeds 200-V Machine Model (A115)
 - Exceeds 2000-V Human Body Model (A114)
 - Exceeds 1000-V Charged Device Model (C101)
- Latch-Up Exceeds 250mA per JESD 78, Class I
- All devices are:
 - Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2)
 - Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

Applications

- General Purpose Logic
- **Bus Drivina**
- Power Down Signal Isolation
- Wide array of products such as:
 - PCs, Notebooks, Netbooks, Ultrabooks
 - Networking Computer Peripherals, Hard Drives, CD/DVD **ROM**

July 2014

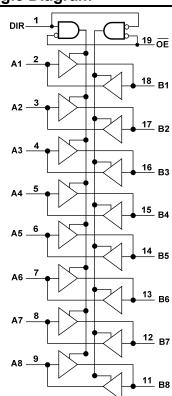

TV, DVD, DVR, Set Top Box

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen and Antimony free, 'Green" and Lead-Free.
- 3. Halogen and Antimony free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Ordering Information

Part Number	Package	Package	Package	13" Tape	and Reel
Part Number	Code	(Note 4 & 5)	Size	Quantity	Part Number Suffix
74LVCH245AT20-13	T20	TSSOP-20	6.4mm X 6.5mm X 1.2mm 0.65 mm lead pitch	2500/Tape & Reel	-13
74LVCH245AQ20-13	Q20	V-QFN4525-20	2.5mm X 4.5mm X 0.95mm 0.50 mm lead pitch	2500/Tape & Reel	-13


Notes:

- 4. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 5. V-QFN4525-20 is a JEDEC recognized naming convention that specifies the package thickness category as V and the number 4525 describes the package as 4.5mm X 2.5mm.

Pin Descriptions

Pin Number	Pin Name	Description
1	DIR	Direction Control
2	1A1	Data Input
3	2Y4	Data Output
4	1A2	Data Input
5	2Y3	Data Output
6	1A3	Data Input
7	2Y2	Data Output
8	1A4	Data Input
9	2Y1	Data Output
10	GND	Ground
11	2A1	Data Input
12	1Y4	Data Output
13	2A2	Data Input
14	1Y3	Data Output
15	2A3	Data Input
16	1Y2	Data Output
17	2A4	Data Input
18	1Y1	Data Output
19	2OE	Output Enable 2
20	Vcc	Supply Voltage

Logic Diagram

Function Table

INP	UTS	
OE	DIR	Operation
L	L	B Data to A Bus
L	Н	A Data to B Bus
Н	Χ	Bus Isolation

Absolute Maximum Ratings (Notes 6 & 7)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	kV
ESD CDM	Charged Device Model ESD Protection	1	kV
ESD MM	Machine Model ESD Protection	200	V
Vcc	Supply Voltage Range	-0.5 to +7.0	V
VI	Input Voltage Range	-0.5 to +7.0	V
I _{IK}	Input Clamp Current V _I < 0V	-20	mA
I _{OK}	Output Clamp Current V _O < 0V	-50	mA
lo	Continuous Output Current -0.5V < V _O V _{CC} +0.5V	±50	mA
Icc	Continuous Current Through V _{CC}	100	mA
I _{GND}	Continuous Current Through GND	-100	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _{TOT}	Total Power Dissipation	500	mW

Notes:

- 6. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.
- 7. Forcing the maximum allowed voltage could cause a condition exceeding the maximum current or conversely forcing the maximum current could cause a condition exceeding the maximum voltage. The ratings of both current and voltage must be maintained within the controlled range.

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Max	Unit	
\/	Cumply Voltage	Operating	1.65	3.6	V	
V_{CC}	Supply Voltage	Data Retention Only	1.5	_	V	
VI	Input Voltage	_	0	5.5	V	
Vo	Output Voltage	_	0	V _{CC}	V	
	I _{OH} High-Level Output Current	V _{CC} = 1.65V	_	-4		
		V _{CC} = 2.3V	V _{CC} = 2.3V	_	-8	^
Іон		V _{CC} = 2.7V	_	-12	mA	
		V _{CC} = 3.0V	_	-24	1	
		V _{CC} = 1.65V	_	4		
	l and and Outside Outside	V _{CC} = 2.3V	_	8	^	
loL	Low-Level Output Current	V _{CC} = 2.7V	_	12	mA mA	
		V _{CC} = 3.0V	_	24	1	
Δt/ΔV	Input Transition Rise or Fall Rate		_	10	ns/V	
T _A	Operating Free-Air Temperature		-40	+125	°C	

Electrical Characteristics

Comple ed	Damamatan	Took Conditions	.,	T _A = -40°C	c to +85°C	T _A = -40°C	to +125°C	l lmi4	
Symbol	Parameter	Test Conditions	V _{CC}	Min	Max	Min	Max	Unit	
			1.65V to 1.95	V _{CC} X 0.65	_	V _{CC} X 0.65	_		
V_{IH}	High-Level Input Voltage		2.3V to 2.7V	1.7	_	1.7	_	V	
	Voltage		3.0V to 3.6 V	2	_	2	_		
			1.65V to 1.95	_	V _{CC} X 0.35	_	V _{CC} X 0.35		
V_{IL}	Low-Level input voltage		2.3V to 2.7V	_	0.7	_	0.7	V	
	Voltage		3.0 V to 3.6V	_	0.8	_	0.8		
		I _{OH} = -50μA	1.65V to 5.5V	V _{CC} -0.2	_	V _{CC} -0.3	_		
		$I_{OH} = -4mA$	1.65V	1.2	_	1.05	_		
	High-Level Output	I _{OH} = -8mA	2.3V	1.7	_	1.65	_		
V_{OH}	Voltage	L = 40m A	2.7V	2.2	_	2.05	_	.,	
		I _{OH} = -12mA	3.V	2.4	_	2.48	_	V	
		I _{OH} = -24mA	3.0V	2.3	_	2.0	_		
		I _{OL} = 100μA	1.65V to 5.5V	_	0.2	_	0.3		
		I _{OL} = 4mA	1.65V	_	0.45	_	0.65		
V_{OL}	Low-Level Output Voltage	I _{OL} = 8mA	2.3V	_	0.60	_	0.80	V	
		I _{OL} = 12mA	2.7V	_	0.40	_	0.60		
		I _{OL} = 24mA	3.V	_	0.55	_	0.80]	
I _{OFF}	Power Down Leakage Current	V _I or V _O = 0 or 5.5V	0V	_	±10	_	±20	μA	
II	Input Current Control Pins	V _I = GND or 5.5V	0 to 5.5V	_	±5	_	±20	μA	
		V _I = 0.58V		25	_	15	_		
		V _I = 1.07	1.65V	-25	_	-15	_		
	Input Current	V _I = 0.7V	2.01/	45	_	35	_		
$I_{I(HOLD)}$	Required to Change	V _I = 1.7V	2.3V	-45	_	-35	_	μA	
	State	V _I = 0.8V	0.01/	75	_	60	_		
		V _I = 2.0V	3.0V	-75	_	-60	_		
		V _I = 0 or 3.6V	3.6V	_	±500	_	±500		
l _{oz}	Z-State current	$V_1 = GND \text{ or } 5.5V$ $V_0 = 0 \text{ or } 5.5V$	3.6V	_	±5	_	± 20	uA	
Icc	Supply Current	$V_1 = GND \text{ or } V_{CC}$ $I_0 = 0$	6.0V	_	10	_	40	μA	
ΔI_{CC}	Additional Supply Current	One input at V _{CC} -0.6V Io = 0A	2.7V to 3.6V	_	500	_	5000	μΑ	
Ci	Input Capacitance	$V_I = GND \text{ or } V_{CC}$	3.3V	4.0 ty	/pical	4.0 tv	/pical		
C _o	Output Capacitance	V_{O} = GND or V_{CC}	3.3V		/pical		/pical	pF	

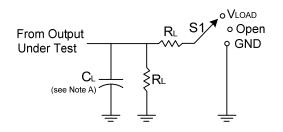
Switching Characteristics

Symbol	Parameter	Test	V _{CC}		T _A = +25°0			10°C to 5°C		10°C to 15°C	Unit
-		Conditions		Min	Ту	Max	Min	Max	Min	Max	
			1.8V ± 0.15V	1	6.0	12.2	1	12.7	1	16.9	
	Propagation	Figure 1	2.5V ± 0.2V	1	3.9	8.1	1	8.5	1	9.1	
t _{PD}	Delay A _N to B _N or B _N to A _N		2.7V	1	4.2	8.7	1	9.6	1	9.9	ns
	0. 214 10 114		3.3V ± 0.3V	1.5	3.8	8.1	1.5	8.7	1.5	9.2	
	OL TO AN		1.8V ± 0.15V	1	7	14.8	1	15.3	1	22.5	
		Figure 1	2.5V ± 0.2V	1	4.5	10	1	10.5	1	12.4	
t _{EN}			2.7V	1	5.4	9.3	1	9.5	1	12.0	ns
	or \overline{OE} to B_N		3.3V ± 0.3V	1.5	4.4	8.3	1.5	8.5	1.5	11.0	
	Disable Time		1.8V ± 0.15V	1	7.8	16.5	1	17	1	18.4	
	OE to A _N	Figure 1	2.5V ± 0.2V	1	4	9	1	9.5	1	10.5	
t _{DIS}	t_{DIS} OE to A_N or \overline{OE} to B_N		2.7V	1	4.4	8.3	1	8.5	1	10.0	ns
			3.3V ± 0.3V	1.7	4.1	7.3	1.7	7.5	1.7	9.0	
t _{sk(0)}	Output Skew Time		3.3V ± 0.3V	_	_	1.0	_	_	_	1.5	ns

Operating Characteristics

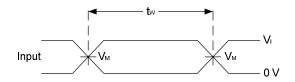
 $T_A = +25$ °C

Symbol	Parameter	Test Conditions	V _{CC}	Тур	Unit
	Danier dia dia attan	E = 10MH=	1.8V ± 0.15V	9.9	
C_{pd}	Power dissipation capacitance per gate	F = 10MHz Outputs Enabled	2.5V ± 0.2V	10.2	pF
	capacitance per gate	Outputs Enabled	$3.3V \pm 0.3V$	10.6	

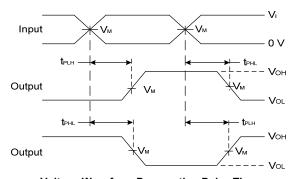

Package Characteristics

Symbol	Parameter	Package	Test Conditions	Min	Тур	Max	Unit
θ_{JA}	Thermal Resistance Junction-to-Ambient	TSSOP-20	(Note 8)	_	74	_	°C/W
θ_{JC}	Thermal Resistance Junction-to-Case	TSSOP-20	(Note 8)	_	15	_	°C/W
θ_{JA}	Thermal Resistance Junction-to-Ambient	V-QFN4525-20	(Note 8)	_	67	_	°C/W
θЈС	Thermal Resistance Junction-to-Case	V-QFN4525-20	(Note 8)	_	20	_	°C/W

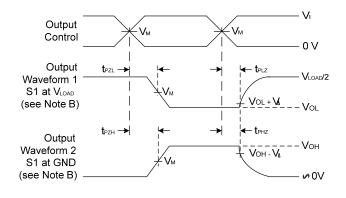
Note: 8. Test conditions for TSSOP-20 and V-QFN4525-20: Devices mounted on 4 layer FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout per JESD 51-7.



Parameter Measurement Information



TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND


V	In	puts				6		
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	R_L	$\mathbf{V}\Delta$	
1.8V ± 0.15V	V_{CC}	≤2ns	V _{CC} /2	2 x V _{CC}	30pF	1ΚΩ	0.15V	
$2.5V \pm 0.2V$	Vcc	≤2ns	V _{CC} /2	2 x V _{CC}	30pF	500Ω	0.15V	
2.7V	2.7V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V	
$3.3V \pm 0.3V$	2.7V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V	

Voltage Waveform Pulse Duration

Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs

Voltage Waveform Enable and Disable Times Low and High Level Enabling

Notes: A. Includes test lead and test apparatus capacitance.

B. All pulses are supplied at pulse repetition rate ≤ 10 MHz.

C. Inputs are measured separately one transition per measurement.

D. t_{PLZ} and t_{PHZ} are the same as t_{dls}.

E. t_{PZL} and t_{PZH} are the same as t_{ENO}

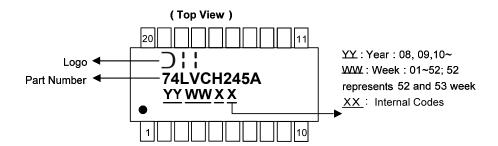
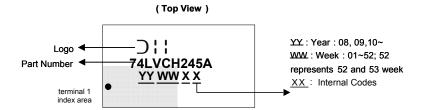

F. t_{PLH} and t_{PHL} are the same as $t_{\text{PD.}}$

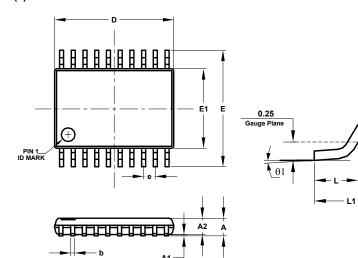
Figure 1 Load Circuit and Voltage Waveforms


Marking Information

(1) TSSOP20

Part Number	Package		
74LVCH245AT20	TSSOP-20		

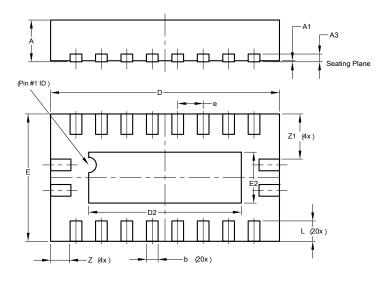
(2) QFN-20 (V-QFN4525-20)


Part Number	Package
74LVCH245AQ20	V-QFN4525-20

Package Outline Dimensions (All Dimensions in mm)

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

(1) TSSOP-20



TSSOP-20				
Dim	Min	Max	Тур	
Α	-	1.20	-	
A1	0.05	0.15	-	
A2	0.80	1.05	1	
b	0.19	0.30	-	
С	0.09	0.20	-	
D	6.40	6.60	6.50	
Е	6.20	6.60	6.40	
E1	4.30	4.50	4.40	
е	0.65 BSC			
L	0.45	0.75	0.60	
L1	1.0 REF			
θ1	0°	8°	-	
θ2	10°	14°	12°	
θ3	10°	14°	12°	
All Dimensions in mm				

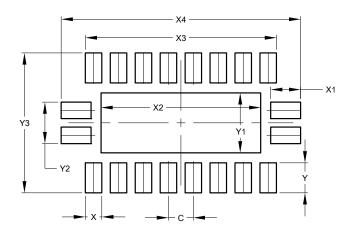
θ2

DETAIL

(2) QFN-20 (V-QFN4525-20)


V-QFN4525-20				
Dim	Min	Max	Тур	
Α	0.75	0.85	0.80	
A1	0.00	0.05	0.02	
A3	-	-	0.15	
b	0.18	0.30	0.23	
D	4.45	4.55	4.50	
D2	2.85	3.15	3.00	
Е	2.45	2.55	2.50	
E2	0.85	1.15	1.00	
е	0.50BSC			
L	0.30	0.50	0.40	
Z	-	-	0.385	
Z1	-	-	0.885	
All Dimensions in mm				

Suggested Pad Layout


Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

(1) TSSOP-20

Dimensions	Value (in mm)
С	0.650
X	0.420
X1	6.270
Υ	1.789
Y1	4.160
Y2	7.720

(2) QFN-20 (V-QFN4525-20)

Dimensions	Value (in mm)
С	0.500
X	0.330
X1	0.600
X2	3.200
Х3	3.830
X4	4.800
Υ	0.600
Y1	1.200
Y2	0.830
V3	2 800

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com