

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

74LVCH32373A

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

Product specification Supersedes data of 1999 Nov 24 2004 May 19

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A

FEATURES

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- MULTIBYTE flow-trough standard pin-out architecture
- Low inductance multiple power and ground pins for minimum noise and ground bounce
- · Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- · All data inputs have bushold
- Complies with JEDEC standard JESD8-B/JESD36
- ESD protection: HBM EIA/JESD22-A114-B exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 °C to +85 °C
- · Packaged in plastic fine-pitch ball grid array package.

DESCRIPTION

The 74LVCH32373A is a high-performance, low-power, low-voltage, Si-gate CMOS device superior to most advanced CMOS compatible TTL families.

The inputs can be driven from either 3.3 V or 5 V devices. In 3-state operation, outputs can handle 5 V. These features allow the use of these devices in a mixed 3.3 V and 5 V environment.

The 74LVCH32373A is a 32-bit transparent D-type latch featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications. One latch enable input (nLE) and one output enable input (nOE) are provided for each octal. Inputs can be driven from either 3.3 V or 5 V devices.

The 74LVCH32373A consists of 4 sections of eight D-type transparent latches with 3-state true outputs. When input nLE is HIGH, data at the nDn inputs enter the latches. In this condition the latches are transparent, i.e. a latch output will change each time its corresponding D-input changes.

When input nLE is LOW, the latches store the information that was present at the D-inputs one set-up time preceding the HIGH-to-LOW transition of nLE. When input $n\overline{OE}$ is LOW, the contents of the eight latches are available at the outputs. When input $n\overline{OE}$ is HIGH, the outputs go to the high-impedance OFF-state. Operation of the $n\overline{OE}$ input does not affect the state of the latches.

The 74LVCH32373A bushold data input circuits eliminate the need for external pull-up resistors to hold unused inputs.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay nDn to nQn	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	3.0	ns
	propagation delay nLE to nQn	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	3.4	ns
t _{PZH} /t _{PZL}	3-state output enable time nOE to nQn	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	3.5	ns
t _{PHZ} /t _{PLZ}	3-state output disable time nOE to nQn	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	3.9	ns
C _I	input capacitance		5.0	pF
C _{PD}	power dissipation per latch	V _{CC} = 3.3 V; notes 1 and 2		
		outputs enabled	15	pF
		outputs disabled	11	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_1 \times V_{CC}^2 \times f_0)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A

 C_L = output load capacity in pF;

 V_{CC} = supply voltage in Volts;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

2. The condition is $V_I = GND$ to V_{CC} .

FUNCTION TABLE

See note 1.

OPERATING MODE		INPUT	INTERNAL	OUTPUT	
OPERATING MODE	nŌĒ	nLE	nDn	LATCH	nQn
Enable and read register	L	Н	L	L	L
(transparent mode)	L	Н	Н	Н	Н
Latch and read register	L	L	I	L	L
	L	L	h	Н	Н
Latch register and disable	Н	L	I	L	Z
outputs	Н	L	h	Н	Z

Note

1. H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition;

Z = high-impedance OFF-state.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE						
I TPE NOMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE		
74LVCH32373AEC	-40 °C to +85 °C	96	LFBGA96	plastic	SOT536-1		

3

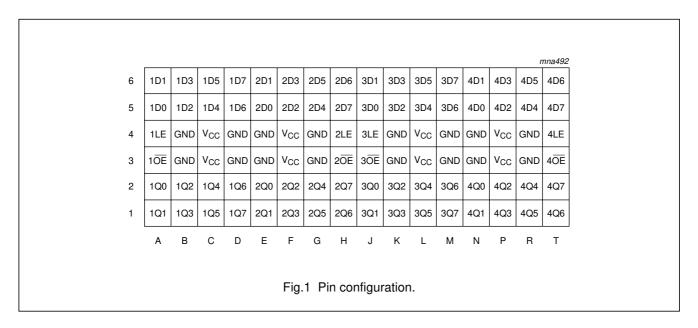
PINNING

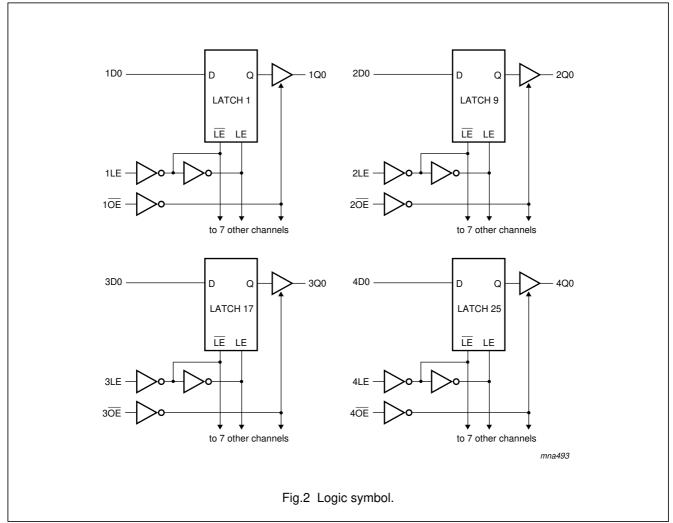
BALL	SYMBOL	DESCRIPTION
A1	1Q1	data output
A2	1Q0	data output
A3	1 OE	output enable input (active LOW)
A4	1LE	latch enable input (active HIGH)
A5	1D0	data input
A6	1D1	data input
B1	1Q3	data output
B2	1Q2	data output
B3	GND	ground (0 V)
B4	GND	ground (0 V)

BALL	SYMBOL	DESCRIPTION
B5	1D2	data input
B6	1D3	data input
C1	1Q5	data output
C2	1Q4	data output
C3	V _{CC}	supply voltage
C4	V _{CC}	supply voltage
C5	1D4	data input
C6	1D5	data input
D1	1Q7	data output
D2	1Q6	data output
D3	GND	ground (0 V)

2004 May 19

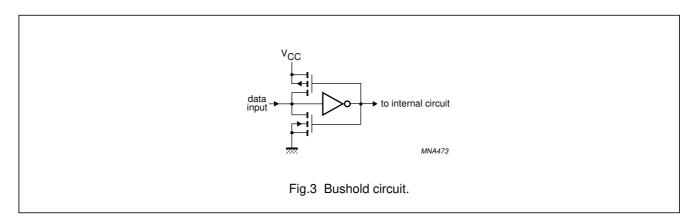
32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state


74LVCH32373A


BALL	SYMBOL	DESCRIPTION
D4	GND	ground (0 V)
D5	1D6	data input
D6	1D7	data input
E1	2Q1	data output
E2	2Q0	data output
E3	GND	ground (0 V)
E4	GND	ground (0 V)
E5	2D0	data input
E6	2D1	data input
F1	2Q3	data output
F2	2Q2	data output
F3	V _{CC}	supply voltage
F4	V _{CC}	supply voltage
F5	2D2	data input
F6	2D3	data input
G1	2Q5	data output
G2	2Q4	data output
G3	GND	ground (0 V)
G4	GND	ground (0 V)
G5	2D4	data input
G6	2D5	data input
H1	2Q6	data output
H2	2Q7	data output
НЗ	2 OE	output enable input (active LOW)
H4	2LE	latch enable input (active HIGH)
H5	2D7	data input
H6	2D6	data input
J1	3Q1	data output
J2	3Q0	data output
J3	3 OE	output enable input (active LOW)
J4	3LE	latch enable input (active HIGH)
J5	3D0	data input
J6	3D1	data input
K1	3Q3	data output
K2	3Q2	data output
K3	GND	ground (0 V)
K4	GND	ground (0 V)
K5	3D2	data input
K6	3D3	data input
L1	3Q5	data output
L2	3Q4	data output

BALL	SYMBOL	DESCRIPTION
L3	V _{CC}	supply voltage
L4	V _{CC}	supply voltage
L5	3D4	data input
L6	3D5	data input
M1	3Q7	data output
M2	3Q6	data output
M3	GND	ground (0 V)
M4	GND	ground (0 V)
M5	3D6	data input
M6	3D7	data input
N1	4Q1	data output
N2	4Q0	data output
N3	GND	ground (0 V)
N4	GND	ground (0 V)
N5	4D0	data input
N6	4D1	data input
P1	4Q3	data output
P2	4Q2	data output
P3	V _{CC}	supply voltage
P4	V _{CC}	supply voltage
P5	4D2	data input
P6	4D3	data input
R1	4Q5	data output
R2	4Q4	data output
R3	GND	ground (0 V)
R4	GND	ground (0 V)
R5	4D4	data input
R6	4D5	data input
T1	4Q6	data output
T2	4Q7	data output
T3	4 OE	output enable input (active LOW)
T4	4LE	latch enable input (active HIGH)
T5	4D7	data input
T6	4D6	data input

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state


74LVCH32373A

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low-voltage applications	1.2	3.6	V
VI	input voltage		0	5.5	V
Vo	output voltage	output HIGH or LOW state	0	V _{CC}	V
		output 3-state	0	5.5	V
T _{amb}	ambient temperature	in free air	-40	+85	°C
t _r , t _f	input rise and fall times	V _{CC} = 1.2 V to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 V to 3.6 V	0	10	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input diode current	V _I < 0 V	_	-50	mA
VI	input voltage	note 1	-0.5	+6.5	V
I _{OK}	output diode current	$V_O > V_{CC}$ or $V_O < 0$ V	_	±50	mA
Vo	output voltage	output HIGH or LOW state; note 1	-0.5	V _{CC} + 0.5	V
		output 3-state; note 1	-0.5	+6.5	V
Io	output source or sink current	$V_O = 0 \text{ V to } V_{CC}$	_	±50	mA
I _{CC} , I _{GND}	V _{CC} or GND current	note 2	_	±200	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}; \text{ note } 3$	_	1000	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. All supply and ground pins connected externally to one voltage source.
- 3. Above 70 $^{\circ}$ C the value of P_{tot} derates linearly with 1.8 mW/K.

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDO	DADAMETED	TEST CONDITIONS		RAINI	TVD			
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT	
T _{amb} = -40) °C to +85 °C; note 1	•			•		•	
V _{IH}	HIGH-level input voltage		1.2	V _{CC}	_	_	V	
			2.7 to 3.6	2.0	_	_	V	
V _{IL}	LOW-level input voltage		1.2	_	_	GND	V	
			2.7 to 3.6	_	_	0.8	V	
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		$I_{O} = -100 \mu A$	2.7 to 3.6	V _{CC} - 0.2	V _{CC}	_	V	
		$I_0 = -12 \text{ mA}$	2.7	V _{CC} - 0.5	_	_	V	
		$I_{O} = -18 \text{ mA}$	3.0	V _{CC} - 0.6	_	_	V	
		$I_O = -24 \text{ mA}$	3.0	V _{CC} - 0.8	_	_	V	
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		$I_{O} = 100 \mu A$	2.7 to 3.6	_	GND	0.20	V	
		I _O = 12 mA	2.7	_	-	0.40	V	
		I _O = 24 mA	3.0	_	_	0.55	V	
ILI	input leakage current	$V_I = 5.5 \text{ V or GND};$ note 2	3.6	_	±0.1	±5	μΑ	
l _{OZ}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = 5.5 \text{ V or GND};$ note 2	3.6	_	0.1	±5	μΑ	
l _{off}	power-off leakage supply current	V_I or $V_O = 5.5 \text{ V}$	0.0	-	0.1	±10	μΑ	
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A	3.6	-	0.1	40	μΑ	
ΔI_{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 0.6 V;$ $I_{O} = 0 A$	2.7 to 3.6	-	5	500	μΑ	
I _{BH}	bushold LOW sustaining current	V _I = 0.8 V; notes 3 and 4	3.0	75	-	-	μΑ	
I _{BHH}	bushold HIGH sustaining current	V _I = 2.0 V; notes 3 and 4	3.0	-75	-	-	μΑ	
I _{BHLO}	bushold LOW overdrive current	notes 3 and 5	3.6	500	-	-	μΑ	
I _{BHHO}	bushold HIGH overdrive current	notes 3 and 5	3.6	-500	-	-	μΑ	

Notes

- 1. All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.
- 2. For bushold parts, the bushold circuit is switched off when $V_I > V_{CC}$ allowing 5.5 V on the input pin.
- 3. For data inputs only, control inputs do not have a bushold circuit.
- 4. The specified sustaining current at the data inputs holds the input below the specified V_I level.
- 5. The specified overdrive current at the data input forces the data input to the opposite logic input state.

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

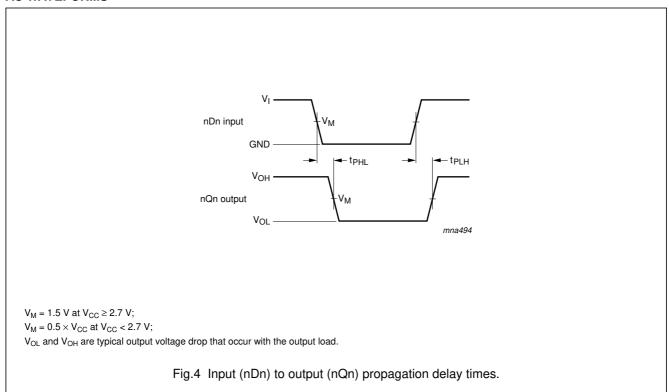
74LVCH32373A

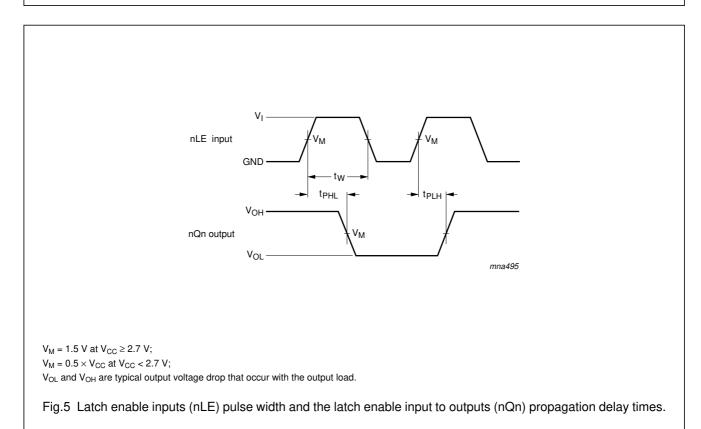
AC CHARACTERISTICS

GND = 0 V; t_r = $t_f \leq$ 2.5 ns; C_L = 50 pF; R_L = 500 $\Omega.$

CVMPOL	DADAMETED	CONDITIC	RAINI	TVD	BAAY			
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT	
T _{amb} = -40) °C to +85 °C; note 1		1	1	1	1	•	
t _{PHL} /t _{PLH}	propagation delay nDn to nQn	see Fig 4 and 8	1.2	_	12	_	ns	
			2.7	1.5	_	4.9	ns	
			3.0 to 3.6	1.0	3.0(2)	4.4	ns	
	propagation delay nLE to nQn	see Fig 5 and 8	1.2	_	14	_	ns	
			2.7	1.5	_	5.3	ns	
			3.0 to 3.6	1.5	3.4(2)	4.8	ns	
t _{PZH} /t _{PZL}	3-state output enable time nOE to nQn	see Fig 7 and 8	1.2	_	18	_	ns	
			2.7	1.5	_	5.7	ns	
			3.0 to 3.6	1.0	3.5(2)	4.9	ns	
t _{PHZ} /t _{PLZ}	3-state output disable time nOE to nQn	see Fig 7 and 8	1.2	_	11	_	ns	
			2.7	1.5	_	6.3	ns	
			3.0 to 3.6	1.5	3.9(2)	5.4	ns	
t _W	nLE pulse width HIGH	see Fig 5	1.2	_	_	_	ns	
			2.7	3.0	_	_	ns	
			3.0 to 3.6	3.0	2.0(2)	_	ns	
t _{su}	set-up time nDn to nLE	see Fig 6	1.2	_	_	_	ns	
			2.7	2.0	_	_	ns	
			3.0 to 3.6	2.0	1.0(2)	_	ns	
t _h	hold time nDn to nLE	see Fig 6	1.2	_	_	_	ns	
			2.7	0.9	_	_	ns	
			3.0 to 3.6	0.9	-1.0(2)	_	ns	
t _{sk(0)}	skew		3.0 to 3.6	-	_	1.0	ns	

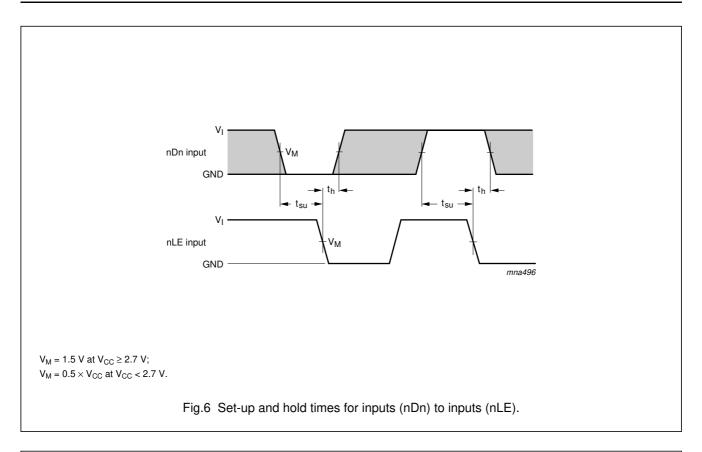
Notes

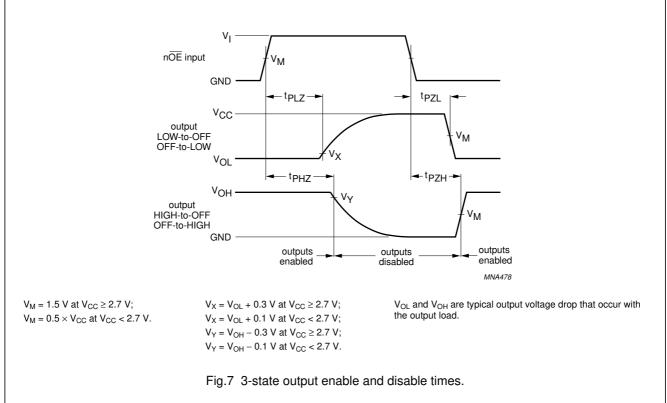

1. All typical values are measured at T_{amb} = 25 °C.


2. Measured at $V_{CC} = 3.3 \text{ V}$.

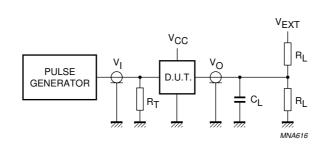
32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A


AC WAVEFORMS



32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state


74LVCH32373A

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A

V	V.	V _I C _L		V _{EXT}			
V _{CC}	"	C L	R _L	t _{PLH} /t _{PHL}	t _{PZH} /t _{PHZ}	t_{PZL}/t_{PLZ}	
1.2 V	V _{CC}	50 pF	$500~\Omega^{(1)}$	open	GND	$2 \times V_{CC}$	
2.7 V	2.7 V	50 pF	500 Ω	open	GND	$2 \times V_{CC}$	
3.0 V to 3.6 V	2.7 V	50 pF	500 Ω	open	GND	$2 \times V_{CC}$	

Note

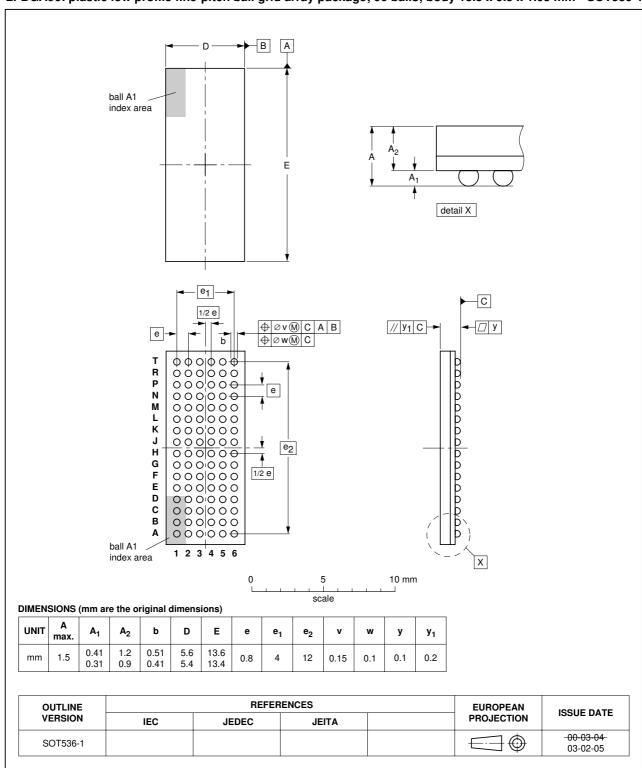
1. The circuit performs better when R_L = 1000 $\Omega.$

Definitions for test circuits:

R_L = Load resistor.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.


Fig.8 Load circuitry for switching times.

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A

PACKAGE OUTLINE

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1

32-bit transparent D-type latch with 5 V tolerant inputs/outputs; 3-state

74LVCH32373A

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

13

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

2004 May 19

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R20/02/pp14

Date of release: 2004 May 19

Document order number: 9397 750 13227

Let's make things better.

Philips Semiconductors

