

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V CMOS 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVCR162245A

FEATURES:

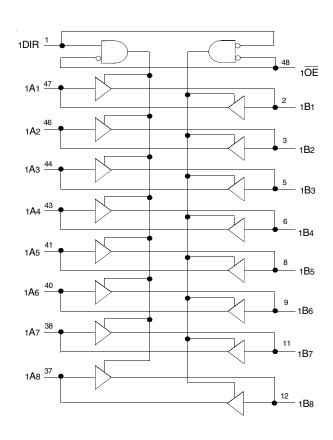
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4μ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- · Available in SSOP and TSSOP packages

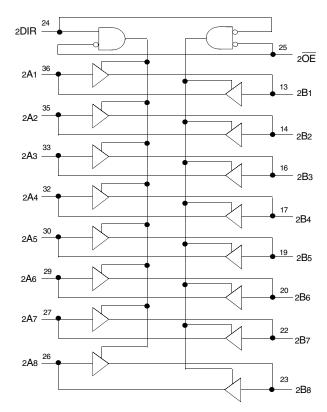
DRIVE FEATURES:

- Balanced Output Drivers: ±12mA
- · Low switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

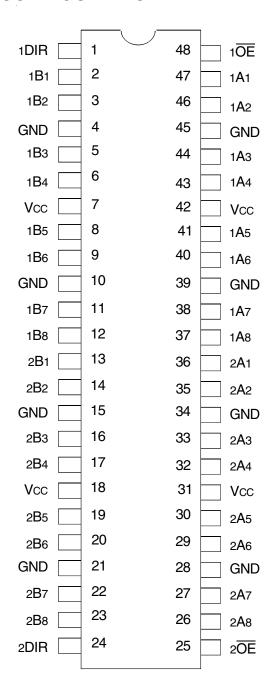

DESCRIPTION:


This 16-bit bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The direction control pin (DIR) controls the direction of data flow. The output enable pin (\overline{OE}) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCR162245A has series resistors in the device output structure which will significantly reduce line noise when used with light loads. The driver has been designed to drive ± 12 mA at the designated threshold levels.

FUNCTIONAL BLOCK DIAGRAM



IDT and the IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JULY 2015

PIN CONFIGURATION

SSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	- 50	mA
Icc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation
 of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
xŌĒ	Output Enable Input (Active LOW)	
xDIR	Direction Control Input	
x A x Side A Inputs or 3-State Outputs		
хВх	Side B Inputs or 3-State Outputs	

FUNCTION TABLE (EACH 8-BIT SECTION)(1)

Inp	outs	
xŌĒ	xDIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	Isolation

NOTE:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Tes	st Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		T -	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lıн lı∟	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μΑ
lozh lozl	High Impedance Output Current (3-State Output pins)	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or VO \le 5.$	5V	T -	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		T -	-0.7	-1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μΑ
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μΑ

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test C	onditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3V	IOH = -6mA	2.4	_	
			IOH = - 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
		IoL = 8mA	_	0.6		
		Vcc = 3V	IoL = 6mA	_	0.55	
			IoL = 12mA	_	0.8	

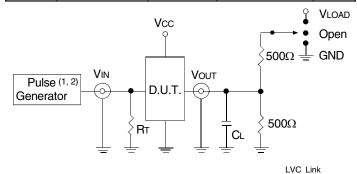
NOTE:

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz	39	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled		4	

SWITCHING CHARACTERISTICS(1)


		Vcc =	: 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	_	5.7	1.5	4.8	ns
tPHL	xAx to xBx, xBx to xAx					
t PZH	Output Enable Time	_	7.9	1.5	6.3	ns
t PZL	xOE to xAx or xBx					
tphz	Output Disable Time	_	8.3	2.2	7.4	ns
tplz	xOE to xAx or xBx					
tsk(o)	Output Skew ⁽²⁾	_	_	_	500	ps

NOTES:

- 1. See TEST CIRCUITS AND WAVEFORMS. $TA = -40^{\circ}C$ to + 85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

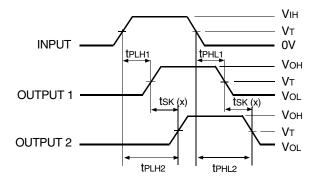
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

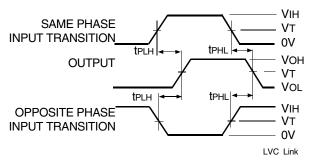

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

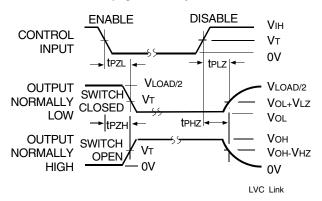
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

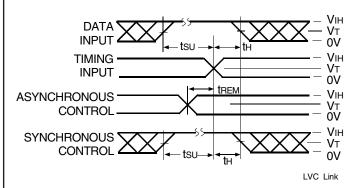


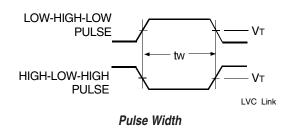
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


Output Skew - tsk(x)

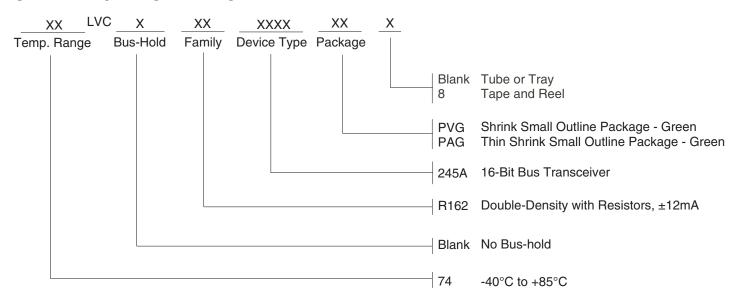
NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

07/28/2015 Pg. 6 Updated the ordering information by removing non RoHS parts and adding Tape and Reel information.

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com