imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74LVCZ161284A

LOW VOLTAGE HIGH SPEED IEEE1284 TRANSCEIVER WITH ERROR-FREE POWER-UP

- HIGH SPEED: t_{PD} = 9ns (MAX.) at V_{CC} = 3V
- LOW POWER DISSIPATION: I_{CC}=20μA (MAX) at V_{CC}=3.6V T_A=85°C
- TTL COMPATIBLE INPUTS V_{IH}=2V (MIN) V_{IL}=0.8(MAX)
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 3.0V to 3.6V
- A PORT HAVE STANDARD 4mA TOTEM POLE OUTPUT
- B PORT HIGH DRIVE SOURCE/SINK CAPABILITY OF 14mA
- AUTO POWER-UP FEATURE TO PREVENT PRINTER ERRORS
- SUPPORT IEEE STD 1284-I (LEVEL 1 TYPE) AND IEEE STD 1284-II (LEVEL 2 TYPE) FOR BIDIRECTIONAL PARALLEL COMMUNICATIONS BETWEEN PERSONAL COMPUTER ANT PRINTING PERIPHERALS
- TRANSLATION CAPABILITY ALLOW OUTPUTS ON CABLE SIDE TO INTERFACE WITH 5V SIGNAL
- PULL-UP RESISTOR INTEGRATED ON ALL OPEN-DRAIN OUTPUT ELIMINATE THE NEED FOR DISCRETE RESISTOR
- REPLACE THE FUNCTION OF TWO 74LVC1284 DEVICES

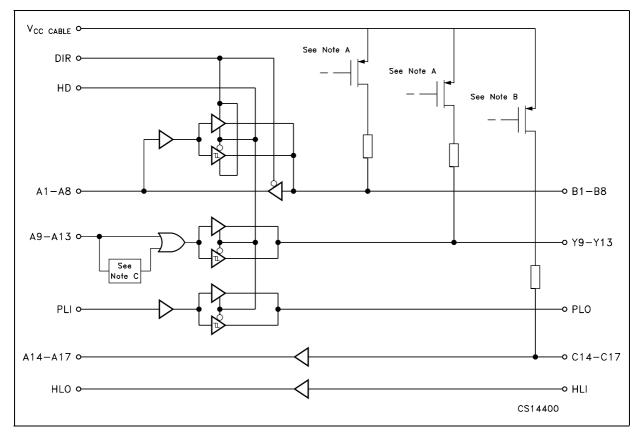
DESCRIPTION

The 74LVCZ161284A contains eight high speed non inverting bidirectional buffers and eleven control/status non-inverting buffers with open drain outputs fabricated in silicon gate C²MOS technology. It's intended to provide a standard signaling method for a bi-direction parallel peripheral in an Extended Capabilities Port Mode (ECP). The HD (Active HIGH) input pin enables the Cable port to switch from Open Drain to a high drive totem pole output, capable of sourcing 14mA on all thirteen buffer and 84mA on PERI LOGIC OUTPUT buffer. The DIR input determines the direction of data flow on the bidirectional buffers. DIR (Active HIGH) enables data flow from A port to B port. DIR (Active LOW) enables data flow from B port to A port. The Y output (Y9-Y13) stay in the high state after power-on until an associated input A9-A13) goes high. When an associated input goes high, all Y outputs are active, and non

September 2003

ORDER CODES

PACKAGE	TUBE	T & R
TSSOP		74LVCZ161284ATTR

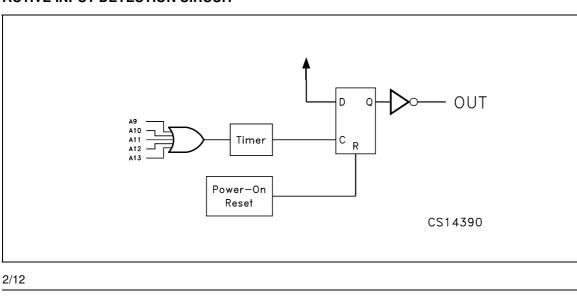

PIN CONNECTION

			212
HD		48	DIR
A9	[2	47	Y9
A10	[3	46	Y10
A11	[₄	45	Y11
A12	[5	44 []	Y12
A13	6	43	Y13
v _{cc}	Γ 7	42	V _{CC/CABLE}
A1	6	4 1]	B1
A2	E a	40]	B2
GND	[10	39	GND
Α3	[11	38	B3
A4	[12	37	B4
A5	[13	36	B5
A6	[14	35	B6
GND	[15	34	GND
Α7	[16	33	B7
A8	[17	32	B8
V _{cc}	[18	31	V _{CC/CABLE}
PLI	[19	30	PLO
A14	[20	29	C14
A15	21	28	C15
A16	[22	27	C16
A17	[23	26	C17
HLO	C 24	25	HLI
	c	S14380	

74LVCZ161284A

inverting signals of the associated inputs are driven through Y outputs. This special feature prevents printer system errors caused by deasserting the BUSY signal in the cable at

LOGIC DIAGRAM



power-on.

range.

It is available in the commercial temperature

NOTE A: The PMOS transistors prevent backdriving current from the signal pins to V_{CC/CABLE} when V_{CC/CABLE} is open or at GND. The PMOS transistor is turned off when the associated driver is in the low state.
NOTE B: The PMOS transistor prevents backdriving current from the signal pins to V_{CC/CABLE} when V_{CC/CABLE} is open or at GND.
NOTE C: Active input detection circuit forces Y9-Y13 to the low state after power-on until one of the A9-A13 goes high. See below.

ACTIVE INPUT DETECTION CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	HD	High Drive Enable Input
2, 3, 4, 5, 6	A9 to A13	Side A Input
8, 9, 11, 12, 13, 14, 16, 17	A1 to A8	Side A Input or Output
19	PLI	Peripheral Logic Input
20, 21, 22, 23	A14 to A17	Side A Output
24	HLO	Host Logic Output
25	HLI	Host Logic Input
29, 28, 27, 26	C14 to C17	Side Cable Output
30	PLO	Peripheral Logic Output
41, 40, 38, 37, 36, 35, 33, 32	B1 to B8	Side Cable Input or Output
47, 46, 45, 44, 43	Y9 to Y13	Side Cable Output
48	DIR	Direction Control Input
10, 15, 34, 39	GND	Ground (0V)
7, 18	V _{CC}	Positive Supply Voltage
31, 42	V _{CC/CABLE}	Cable Power Supply

TRUTH TABLE

INF	TUT	OUTPUT	OUTPUT
DIR	HD	001701	001201
L	L	B1-B8 Data to A1-A8 A9-A13 Data to Y9-Y13	Y9-Y13 and PLO Open Drain
L	н	C14-C17 Data to C14-C17	Y9-Y13 and PLO Totem Pole
н	L	A1-A8 Data to B1-B8 A9-A13 Data to Y9-Y13	B1-B8 Y9-Y13 and PLO Open Drain
н	н	C14-C17 Data to C14-C17	B1-B8 Y9-Y13 and PLO Totem Pole

ABSOLUTE MAXIMUM RATINGS

Symbol	Parame	Value	Unit	
V _{CC}	Supply Voltage	-0.5 to +4.6	V	
V _{CCcable}	Cable Supply Voltage (must be \geq V	/ _{CC})	-0.5 to +7.0	V
V _{IA}	DC Input Voltage A1-A13, PL _{IN} , DI	R, HD _{IN}	-0.5 to +V _{CC} + 0.5	V
V _{IB}	DC Input Voltage B1-B8, C14-C17	, HL _{IN}	-0.5 to +5.5	V
V _{IBp}	DC Input Voltage B1-B8, C14-C17	-2 to +7	V	
V _{OA}	DC Output Voltage A1-A8, A14-A1	-0.5 to +V _{CC} + 0.5	V	
V _{OB}	DC Output Voltage B1-B8, Y9-Y13	-0.5 to +5.5	V	
V _{OBp}	DC Output Voltage B1-B8, Y9-Y13	-2 to +7	V	
IIK	DC Input Diode Current DIR, HD A	9-A13, PL _{IN} C14-C17	- 20	mA
I _{OK}	DC Output Diode Current	A1-A8, A14-A17, HL _{IN}	± 50	mA
		B1-B8, Y9-Y13, PL _{IN}	- 50	
Ι _Ο	DC Output Current	A1-A8, HL _{IN}	± 25	mA
		B1-B8, Y9-Y13	± 50	
		PL _O = LOW	84	
		PL _O = HIGH	-50	
_{CC} or I _{GND}	DC V_{CC} or Ground Current per Su	pply Pin	± 200	mA
T _{stg}	Storage Temperature		-65 to +150	°C
TL	Lead Temperature (10 sec)		300	°C

Absolute Maximum Rating are those value beyond which damage to the device may occur. Functional operation under these condition is not implied

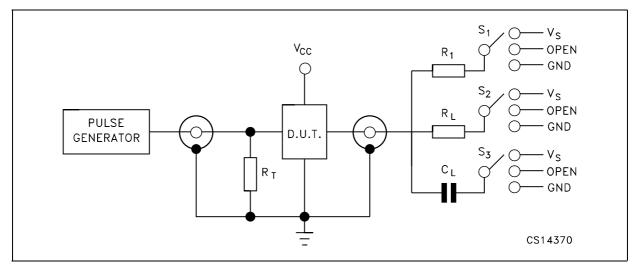
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	3.0 to 3.6	V
V _{CCcable}	Cable Supply Voltage	3.0 to 5.5	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Open Drain Output Voltage	0 to 5.5	V
T _{op}	Operating Temperature	-40 to 85	°C

DC SPECIFICATIONS

				Test	Condition	Va	lue	
Symbol	Р	Parameter		V _{CC} V _{CCcable}		-40 to 85 °C		Unit
			(V)	(V)		Min.	Max.	
V _{IH}	High Level	An, Bn, PL _{IN} , DIR, HD				2		
	Input Voltage	Cn				2.3		V
		HL _{IN}	3.0	3.0		2.6		
V _{IL}	Low Level	An, Bn, PL _{IN} , DIR, HD	to 3.6	to 5.5			0.8	
	Input Voltage	Cn	0.0	0.0			0.8	V
		HL _{IN}					1.6	
V _{OH}	High Level	An, HL	3.0	3.0	Ι _Ο =-50μΑ	2.8		
	Output Voltage		3.0	3.0	I _O =-4mA	2.4		
		Bn, Yn	3.0	3.0	I _O =-14mA	2.0		V
		Bn, Yn	3.0	4.5	I _O =-14mA	2.23		
		PL	3.15	3.15	I _O =-500μA	3.1		
V _{OL}	Low Level	An, HL	3.0	3.0	I _O =50μA		0.2	
	Output Voltage		3.0	3.0	I _O =4mA		0.4	
		Bn, Yn	3.0	3.0	I _O =14mA		0.8	
		Bn, Yn	3.0	4.5	I _O =14mA		0.77	V
		PL	3.0	3.0	I _O =84mA		0.95	
		PL	3.0	4.5	I _O =84mA		0.90	
lı –	Input Current	Cn	3.6	3.6	$V_{I} = V_{CC}$		50	μA
			3.6	3.6	V _I =GND (Pull-up res)		-3.5	mA
		All input except B or C	3.6	5.0	$V_{I} = V_{CC} \text{ or } GND$		± 1	μA
I _{CC}	Quiescent Supp	bly Current			$V_{I} = V_{CC} I_{O} = 0$		0.8	· ·
		-	3.6	5.0	V _I =GND (12xPull-up)		45	mA
I _{OZ}	High	Bn	3.6	5.0	$V_{O} = V_{CC}$		20	μA
	Impedance		3.6	3.6	V _O =GND (Pull-up res)		-3.5	mA
	Output Leakage	A1-A8	3.6	5.0	$V_{O} = V_{CC}$ or GND		± 20	μA
	Current	Open Drain Y Output	3.6	3.6	V _O =GND (Pull-up res)		-3.5	mA
I _{OFF}	Power Off	B, Y output (to GND)	0	5.0	$V_1 \text{ or } V_0 = 0 \text{ to } 7V$		100	μA
	Leakage Current	B, Y output (to V _{CC})	0	5.0	$V_{\rm I}$ or $V_{\rm O} = 0$ to 7V		10	μΑ
V _{hys}	Input	An, Bn, PL _{IN} , DIR, HD	3.3	5.0		0.4		
-	Hysteresis	Cn	3.3	5.0	1	0.8		V
		HL _{IN}	3.3	5.0		0.2		
Z _O	Output Impedance	B1-B8, Y9-Y13	3.3	5.0	$V_{B} = V_{OH}$	30	55	Ω
R _P	Pull-up Resistance	B1-B8, Y9-Y13, C14-C17	3.3	5.0	V _B = V _{OH}	1150	1650	Ω

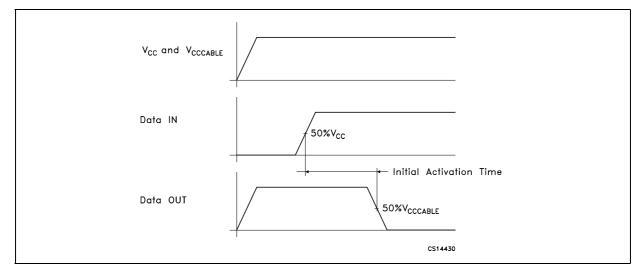
AC ELECTRICAL CHARACTERISTICS

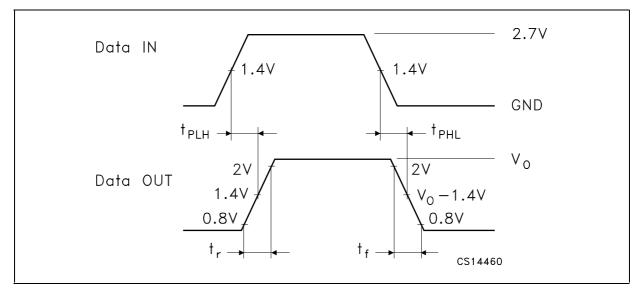

			Test Condition			Value		
Symbol	P	arameter	V _{cc}	V _{CCcable}		-40 to 85 °C		Unit
			(V)	(V)		Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Time	A1-A8 to B1-B8, A9-A13 to Y9-Y13			R_L =500 Ω C_L =50pF	1	7.5	ns
		B1-B8 to A1-A8, C14-C17 to A14-A17	3.0 to	3.0 to	$R_L=500\Omega C_L=50pF$	1	9.0	ns
		PL _{IN} to PL _{OUT}	3.6 5.5		$R_L=500\Omega C_L=50pF$	1	7.0	ns
		HL _{IN} to HL _{OUT}			$R_L=500\Omega C_L=50pF$	1	11.0	ns
t _{PZH}	Enable Delay	DIR to A	3.0	3.0	$R_L=500\Omega C_L=50pF$	1	12	ns
t _{PZL}	Time	HD to Bn, Y9-Y13	to 3.6	to 5.5	R_L =500 Ω C_L =50pF	1	8.5	ns
t _{PLZ}	Disable Delay	DIR to A	3.0	3.0	$R_L=500\Omega C_L=50pF$	1	8.5	ns
t _{PHZ}	Time	DIR to A	to	to	$R_L=500\Omega C_L=50pF$	1	8.5	ns
		HD to Bn, Y9-Y13	3.6	5.5	$R_L=500\Omega C_L=50pF$	1	8.5	ns
t _r t _f	Rise and Fall T B1-B8, Y9-Y13		3.0 to 3.6	3.0 to 5.5	$R_L=500\Omega C_L=50pF$	1	120	ns
t _{OSLH} t _{OSHL}	Output To Outp	ut Skew Time (note1, 2)	3.0 to 3.6	3.0 to 5.5	R _{PULL-UP} =500Ω C _L =50pF	1	2	ns

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$ 2) Parameter guaranteed by design

CAPACITANCE CHARACTERISTICS

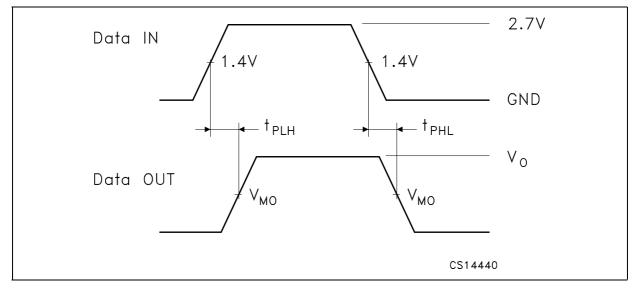
		Tes	Value				
Symbol Para	Parameter	ameter V _{CC} (V)	V _{CC/CABLE}	T _A = 25 °C			Unit
			(V)	Min.	Тур.	Max.	
C _{IN}	Control Input Capacitance (HD, DIR, A9-A13, C14-C17, PL _{IN} , HL _{IN})	Open	Open		4		pF
C _{I/O}	I/O Pin Capacitance	3.3	5.0		6		pF

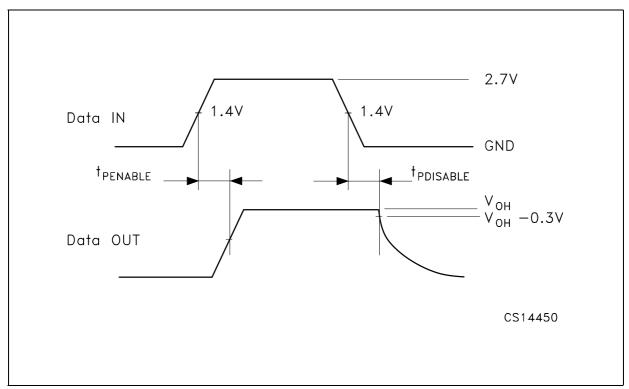

TEST CIRCUIT



TEST	S1	S2	S3
t _{PHL} (A1-A8 to B1-B8, A9-A13 to Y9-Y13, PLH _{IN} to PLH) (see waveform 2)	Open	V _{CC}	V _{CC}
t_{PLH} (A1-A8 to B1-B8, A9-A13 to Y9-Y13, PLH_IN to $PLH,$ HD to B1-B8, Y9-Y13, $PLH)$ (see waveform 2)	Open	GND	GND
t _{PHL} , t _{PLH} (B1-B8 to A1-A8, C14-C17 to A14-A17, HLH _{IN} to HLH) (see waveform 3)	Open	GND	GND
t _r , t _f (A1-A8 to B1-B8, A9-A13 to Y9-Y13) (see waveform 2)	Open	V _{CC}	GND
t _{PLZ} (DIR to A1-A8) (see waveform 5)	6V	GND	GND
t _{PHZ} (DIR to A1-A8) (see waveform 5)	Open	GND	GND
t _{PZL} (DIR to A1-A8) (see waveform 4)	1.4V	GND	GND
t _{PZH} (DIR to A1-A8) (see waveform 4)	4.4V	GND	GND
t _{PLZ} (DIR to B1-B8) (see waveform 5)	6V	GND	GND
t _{PHZ} (DIR to B1-B8) (see waveform 5)	Open	GND	GND

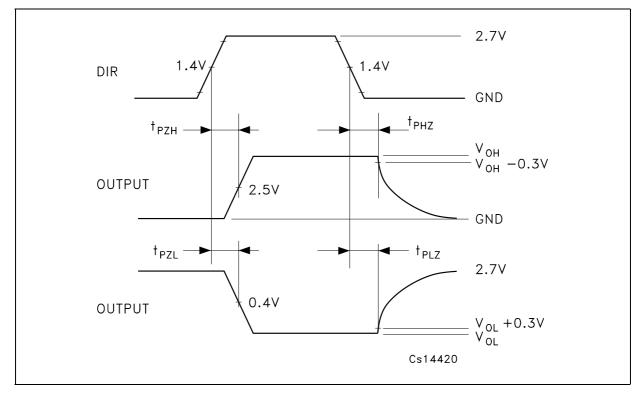
 $C_L = 50 \text{ pF}$ or equivalent (includes jig and probe capacitance) $R_L = R1 = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)


WAVEFORM 1: ERROR-FREE CIRCUIT TIMING CHART (f=1MHz; 50% duty cycle)



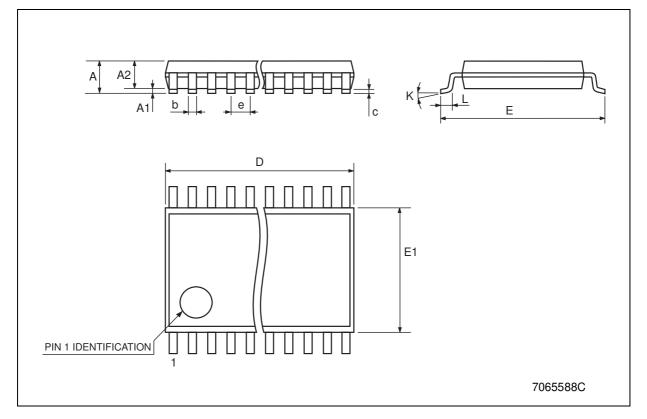
WAVEFORM 2: PROPAGATION DELAY INPUT An TO OUTPUT (f=1MHz; 50% duty cycle)

WAVEFORM 3: PROPAGATION DELAY INPUT Bn TO OUTPUT (f=1MHz; 50% duty cycle)

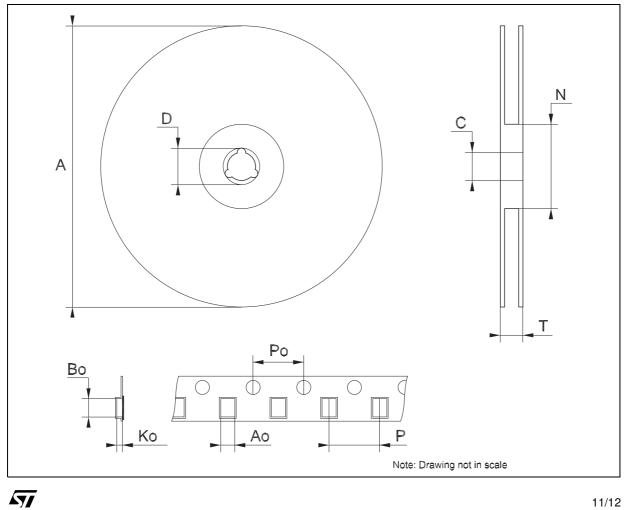


 $V_{MO} = 50\% V_{CC}$

WAVEFORM 4: DATA TO OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)


WAVEFORM 5: DIR TO OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

74LVCZ161284A


Г

	TSSOP48 MECHANICAL DATA								
DIM.		mm.		inch					
DIW.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А			1.2			0.047			
A1	0.05		0.15	0.002		0.006			
A2		0.9			0.035				
b	0.17		0.27	0.0067		0.011			
С	0.09		0.20	0.0035		0.0079			
D	12.4		12.6	0.488		0.496			
Е		8.1 BSC			0.318 BSC				
E1	6.0		6.2	0.236		0.244			
е		0.5 BSC			0.0197 BSC				
К	0°		8°	0°		8°			
L	0.50		0.75	0.020		0.030			

DIM.		mm.			inch	
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			30.4			1.197
Ao	8.7		8.9	0.343		0.350
Bo	13.1		13.3	0.516		0.524
Ko	1.5		1.7	0.059		0.067
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP48 MECHANICAL DATA

11/12

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com