

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

February 1992 Revised June 2001

74LVQ14

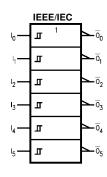
Low Voltage Hex Inverter with Schmitt Trigger Input

General Description

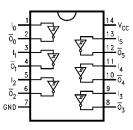
The LVQ14 contains six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

The LVQ14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

Features


- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Guaranteed incident wave switching into 75Ω

Ordering Code:


Order Number	Package Number	Package Description			
74LVQ14SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
74LVQ14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description		
I _n	Inputs		
\overline{O}_n	Outputs		

Truth Table

Input	Output		
I	ō		
L	Н		
Н	L		

H = HIGH Voltage Level L = LOW Voltage Level

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V Supply Voltage (V_{CC})

-0.5V to $V_{CC} + 0.5V$

-0.5V to $V_{CC} + 0.5V$

DC Input Diode Current (I_{IK})

 $V_I = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_O = V_{CC} + 0.5V$ +20 mA DC Output Voltage (V_O)

DC Output Source

DC Input Voltage (V_I)

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

±200 mA $(I_{CC} \text{ or } I_{GND})$

Storage Temperature (T_{STG}) -65°C to +150°C

DC Latch-Up Source or

Sink Current ±100 mA

Recommended Operating Conditions (Note 2)

Supply Voltage (V_{CC})

LVQ 2.0V to 3.6V Input Voltage (V_I) 0V to V_{CC} 0V to $V_{\rm CC}$ Output Voltage (V_O)

Operating Temperature (T_A) -40°C to +85°C

Minimum Input Edge Rate $(\Delta V/\Delta t)$

 $\ensuremath{V_{\text{IN}}}$ from 0.8V to 2.0V

V_{CC} @ 3.0V 125 mV/ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions

for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Syllibol		(V)	Тур	Gu	aranteed Limits	Ullits	Conditions
V _{OH}	Minimum High Level	3.0	2.99	2.9	2.9	V	$I_{OUT} = -50 \mu A$
	Output Voltage	3.0		2.58	2.48	V	$V_{IN} = V_{IL}$ or V_{IH} (Note 3) $I_{OH} = -12$ mA
V _{OL}	Maximum Low Level	3.0	0.002	0.1	0.1	V	$I_{OUT} = 50 \mu A$
	Output Voltage	3.0		0.36	0.44	V	$V_{IN} = V_{IL}$ or V_{IH} (Note 3) $I_{OL} = 12$ mA
I _{IN}	Maximum Input Leakage Current	3.6		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
V _{t+}	Maximum Positive Threshold	3.0		2.2	2.2	V	T _A = Worst Case
V _{t-}	Minimum Negative Threshold	3.0		0.5	0.5	V	T _A = Worst Case
V _{h(max)}	Maximum Hysteresis	3.0		1.2	1.2	V	T _A = Worst Case
V _{h(min)}	Minimum Hysteresis	3.0		0.3	0.3	V	T _A = Worst Case
I _{OLD}	Minimum Dynamic	3.6			36	mA	V _{OLD} = 0.8V Max (Note 5)
I _{OHD}	Output Current (Note 4)	3.6			-25	mA	V _{OHD} = 2.0V Min (Note 5)
I _{CC}	Maximum Quiescent Supply Current	3.6		2.0	20.0	μА	V _{IN} = V _{CC} or GND
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.9	1.1		V	(Note 6)(Note 7)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.8	-1.1		V	(Note 6)(Note 7)
V _{IHD}	Maximum High Level Dynamic Input Voltage	3.3	1.9	2.0		V	(Note 6)(Note 8)
V _{ILD}	Maximum Low Level Dynamic Input Voltage	3.3	1.3	2.0		V	(Note 6)(Note 8)

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ.

Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V; one output at GND.

 $\textbf{Note 8:} \ \text{Max number of Data Inputs (n) switching. (n-1) inputs switching 0V to 3.3V. Input-under-test switching: 3.3V to threshold (V_{ILD}), 0V to$

AC Electrical Characteristics

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units	
İ		(V)	Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	2.7	1.5	11.4	19.0	1.5	21.0		
		3.3 ± 0.3	1.5	9.5	13.5	1.5	15.0	ns	
t _{PHL}	Propagation Delay	2.7	1.5	9.0	16.2	1.5	19.0		
		3.3 ± 0.3	1.5	7.5	11.5	1.5	13.0	ns	
t _{OSHL} ,	Output to Output Skew	2.7		1.0	1.5		1.5		
t _{OSLH}	Data to Output (Note 9)	3.3 ± 0.3		1.0	1.5		1.5	ns	

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = Open
C _{PD} (Note 10)	Power Dissipation Capacitance	20	pF	V _{CC} = 3.3V

Note 10: C_{PD} is measured at 10 MHz.

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS 0.014

0.050 (1.270) TYP $\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{ TYP}$

M14A (REV h)

0.008 (0.203) TYP

0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS

0.004 (0.102) ALL LEAD TIPS

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 10.2±0.1 -A-9.27 TYP 5.3±0.1 7.8 -B-3.9 0.2 C B A PIN #1 IDENT. 1.27 TYP LAND PATTERN RECOMMENDATION SEE DETAIL A ALL LEAD TIPS 1.8±0.1 0.1 C -C-0.15-0.25 -1.27 TYP ⊕ 0.12 **(** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE NOTES: 0.25 A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15 SEATING PLANE M14DRevB1 DETAIL A

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com