: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

OCTAL D-TYPE FLIP FLOP WITH 3 STATE OUTPUTS NON INVERTING

- HIGH SPEED:
$\mathrm{f}_{\text {MAX }}=180 \mathrm{MHz}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- COMPATIBLE WITH TTL OUTPUTS
- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOW NOISE:
$\mathrm{V}_{\mathrm{OLP}}=0.5 \mathrm{~V}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 75Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS: $\mathrm{t}_{\mathrm{PLH}} \cong \mathrm{t}_{\text {PHL }}$
- operating voltage range: $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2 \mathrm{~V}$ to 3.6 V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 574
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74LVQ574 is a low voltage CMOS OCTAL D-TYPE FLIP-FLOP with 3 STATE OUTPUTS NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power and low noise 3.3 V applications.

These 8 bit D-Type Flip-Flops are controlled by a clock input (CK) and an output enable input (OE). On the positive transition of the clock, the Q

Table 1: Order Codes

PACKAGE	T \& R
SOP	74LVQ574MTR
TSSOP	74LVQ574TTR

outputs will be set to the logic that were setup at the D inputs. While the ($\overline{\mathrm{OE})}$ input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.
The output control does not affect the internal operation of flip-flops; that is, the old data can be retained or the new data can be entered even while the outputs are off. In order to enhance PC board layout, the 74LVQ574 offers a pinout having inputs and outputs on opposite side of the package. All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

Figure 2: Input And Output Equivalent Circuit

Table 2: Pin Description

PIN N	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{OE}}$	3-State Output Enable Input (Active LOW)
$2,3,4,5,6$, $7,8,9$	D0 to D7	Data Inputs
$12,13,14$, $15,16,17$, 18,19	Q0 to Q7	3-State Outputs
11	CLOCK	Clock Input (LOW-to-HIGH Edge Trigger)
10	GND	Ground (OV)
20	V $_{\text {CC }}$	Positive Supply Voltage

Table 3: Truth Table

INPUTS			OUTPUT
$\overline{\mathrm{OE}}$	CK	\mathbf{D}	\mathbf{Q}
H	X	X	Z
L	L	X	NO CHANGE
L	ζ	L	L
L	-	H	H

X : Don't Care
Z : High Impedance
Figure 3: Logic Diagram

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 400	mA
$\mathrm{~T}_{\mathrm{stg}}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	2 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{CC}	V
V_{O}	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ (note 2)	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.2 V to 3.6 V
2) V_{IN} from 0.8 V to 2 V

Table 6: DC Specifications

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	$\begin{gathered} 3.0 \\ \text { to } \\ 3.6 \end{gathered}$		2.0			2.0		2.0		V
V_{IL}	Low Level Input Voltage					0.8		0.8		0.8	V
V_{OH}	High Level Output Voltage	3.0	$\mathrm{l}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	2.9	2.99		2.9		2.9		V
			$\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.58			2.48		2.48		
			$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$				2.2		2.2		
V_{OL}	Low Level Output Voltage	3.0	$\mathrm{l}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.002	0.1		0.1		0.1	V
			$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0	0.36		0.44		0.44	
			$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$					0.55		0.55	
1	Input Leakage Current	3.6	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			± 0.1		± 1		± 1	$\mu \mathrm{A}$
I_{OZ}	High Impedance Output Leakage Current	3.6	$\begin{gathered} V_{I}=V_{I H} \text { or } V_{I L} \\ V_{O}=V_{C C} \text { or } G N D \end{gathered}$			± 0.25		± 2.5		± 5.0	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			4		40		40	$\mu \mathrm{A}$
IOLD	Dynamic Output Current (note 1, 2)	3.6	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}$ max				36		25		mA
$\mathrm{I}_{\mathrm{OHD}}$			$\mathrm{V}_{\mathrm{OHD}}=2 \mathrm{~V}$ min				-25		-25		mA

1) Maximum test duration 2 ms , one output loaded at time
2) Incident wave switching is guaranteed on transmission lines with impedances as low as 75Ω

Table 7: Dynamic Switching Characteristics

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Low Voltage Quiet Output (note 1, 2)	3.3	$C_{L}=50 \mathrm{pF}$		0.5	0.8					V
$\mathrm{V}_{\text {OLV }}$				-0.8	-0.6						
$\mathrm{V}_{\text {IHD }}$	Dynamic High Voltage Input (note 1, 3)	3.3		2							V
$\mathrm{V}_{\text {ILD }}$	Dynamic Low Voltage Input (note 1, 3)	3.3				0.8					V

1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0 V to 3.3 V , ($\mathrm{n}-1$) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. ($\mathrm{n}-1$) switching 0 V to 3.3 V . Inputs under test switching: 3.3 V to threshold (V ILD), 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

Table 8: AC Electrical Characteristics $\left(C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time CK to Q	2.7			7.4	12.0		14.0		16.0	ns
		$3.3{ }^{(*)}$			6.1	9.0		10.5		12.0	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Enable Time	2.7			8.0	12.0		14.0		16.0	ns
		$3.3{ }^{(*)}$			6.5	9.0		10.5		12.0	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Disable Time	2.7			8.0	12.0		14.0		16.0	ns
		$3.3{ }^{(*)}$			6.5	9.0		10.5		12.0	
t_{W}	CK Pulse Width HIGH or LOW	2.7		4.0	2.0		4.0		4.0		ns
		$3.3{ }^{(*)}$		3.0	1.5		3.0		3.0		
$\begin{gathered} \mathrm{t}_{\mathrm{sL}} \\ \mathrm{t}_{\mathrm{sH}} \end{gathered}$	Setup Time D to CK, HIGH or LOW	2.7		3.0	0.0		3.0		3.0		ns
		$3.3{ }^{(*)}$		2.0	0.0		2.0		2.0		
$\begin{aligned} & \mathrm{t}_{\mathrm{hL}} \\ & \mathrm{t}_{\mathrm{hH}} \end{aligned}$	Hold Time CK to D, HIGH or LOW	2.7		1.0	0.0		1.0		1.0		ns
		$3.3{ }^{(*)}$		1.5	0.0		1.5		1.5		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	2.7		100	150		80		60		MHz
		$3.3{ }^{(*)}$		120	180		100		80		
tosLh toshi	Output To Output Skew Time (note1, 2)	2.7			0.5	1.0		1.0		1.0	ns
		$3.3{ }^{(*)}$			0.5	1.0		1.0		1.0	

[^0]Table 9: Capacitive Characteristics

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3			4						pF
Cout	Output Capacitance	3.3			7						pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$		15						pF

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without Ioad. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $\mathrm{I}_{\mathrm{CC}(\mathrm{opr})}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / 8$ (per Flip Flop)
Figure 4: Test Circuit

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	$2 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	Open

$C_{L}=50 p F$ or equivalent (includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{1}=500 \Omega$ or equivalent
$R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω)

Figure 5: Waveform - Propagation Delays, Setup And Hold Times ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Figure 6: Waveform - Output Enable And Disable Times ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

Figure 7: Waveform - Pulse Width ($\mathrm{f}=1 \mathrm{MHz}$; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	2.35		2.65	0.093		0.104
A1	0.1		0.30	0.004		0.012
B	0.33		0.51	0.013		0.020
C	0.23		0.32	0.009		0.013
D	12.60		13.00	0.496		0.512
E	7.4		7.6	0.291		0.299
e		1.27			0.050	
H	10.00		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.4		1.27	0.016		0.050
k	0°		8°	0°		8°
ddd			0.100			0.004

TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Tape \& Reel SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
T			30.4			1.197
Ao	10.8		11	0.425		0.433
Bo	13.2		13.4	0.520		0.528
Ko	3.1		3.3	0.122		0.130
Po	3.9		4.1	0.153		0.161
P	11.9		12.1	0.468		0.476

Tape \& Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			0.882
T			7	0.268		0.276
Ao	6.8					
Bo	6.9		1.9	0.272		0.075
Po	1.7		4.1	0.153		0.161
P	11.9		12.1	0.468		0.476

Note: Drawing not in scale

Table 10: Revision History

Date	Revision	Description of Changes
29-Jul-2004	5	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

[^0]: 1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\mathrm{PLHm}}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLn }}\right|$)
 2) Parameter guaranteed by design
 (*) Voltage range is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
