: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Connection Diagram

$\overline{0 E A B_{1}}-$	1	56	- $\overline{\text { OEBA }}$
$\overline{\mathrm{LEAB}}{ }_{1}-$	2	55	- LEEA
$\overline{\mathrm{CEAB}}{ }_{1}-$	3	54	- $\overline{C E B A}$
GND -	4	53	- GND
A_{0}	5	52	$-\mathrm{B}_{0}$
$A_{1}-$	6	51	- B_{1}
$\mathrm{v}_{\mathrm{CC}}-$	7	50	$-v_{C C}$
A_{2}	8	49	- B_{2}
$\mathrm{A}_{3}-$	9	48	$-\mathrm{B}_{3}$
$\mathrm{A}_{4}-$	10	47	$-\mathrm{B}_{4}$
GND -	11	46	- GND
$\mathrm{A}_{5}-$	12	45	- B_{5}
$\mathrm{A}_{6}-$	13	44	$-\mathrm{B}_{6}$
$\mathrm{A}_{7}-$	14	43	$-\mathrm{B}_{7}$
$\mathrm{A}_{8}-$	15	42	- Br_{8}
$\mathrm{A}_{9}-$	16	41	- B_{9}
$\mathrm{A}_{10}-$	17	40	- B_{10}
GND -	18	39	- GND
$A_{11}-$	19	38	$-\mathrm{B}_{11}$
$A_{12}-$	20	37	$-\mathrm{B}_{12}$
$A_{13}-$	21	36	$-\mathrm{B}_{13}$
$\mathrm{V}_{\mathrm{CC}}-$	22	35	$-\mathrm{V}_{\text {c }}$
$A_{14}-$	23	34	- B_{14}
$\mathrm{A}_{15}-$	24	33	- B_{15}
GND -	25	32	- GND
$\overline{\mathrm{CEAB}_{2}}$ -	26	31	- $\overline{\text { CEBA }}$
$\overline{\mathrm{LEAB}}_{2}-$	27	30	- $\overline{\text { LEEA }}$
$\overline{0 E A B}_{2}-$	28	29	- $\overline{\text { CEBA }}$

Functional Description

The LVT16543 and LVTH16543 contain two sets of D-type latches, with separate input and output controls for each. For data flow from A to B, for example, the A to B Enable (CEAB) input must be LOW in order to enter data from the A Port or take data from the B Port as indicated in the Data I/ O Control Table. With $\overline{\text { CEAB }}$ LOW, a low signal on (LEAB) input makes the A to B latches transparent; a subsequent LOW-to-HIGH transition of the $\overline{\text { LEAB }}$ line puts the

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OEAB}}_{n}$	A-to-B Output Enable Input (Active LOW)
$\overline{\mathrm{OEBA}}_{n}$	B-to-A Output Enable Input (Active LOW)
$\overline{\mathrm{CEAB}}_{n}$	A-to-B Enable Input (Active LOW)
$\overline{\mathrm{CEBA}}_{n}$	B-to-A Enable Input (Active LOW)
$\overline{\mathrm{LEAB}}_{n}$	A-to-B Latch Enable Input (Active LOW)
$\overline{\mathrm{LEBA}}_{n}$	B-to-A Latch Enable Input (Active LOW)
$\mathrm{A}_{0}-A_{15}$	A-to-B Data Inputs or
$\mathrm{B}_{0}-\mathrm{B}_{15}$	B-to-A 3-STATE Outputs
B-to-A Data Inputs or	
A-to-B 3-STATE Outputs	

A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both LOW, the B output buffers are active and reflect the data present on the output of the A latches. Control of data flow from B to A is similar, but using the CEBA, $\overline{\text { LEBA }}$ and $\overline{O E B A}$. Each byte has separate control inputs, allowing the device to be used as two 8-bit transceivers or as one 16-bit transceiver.

Data I/O Control Table

	Inputs		Latch Status (Byte $\mathbf{n})$	Output Buffers (Byte $\mathbf{n})$
$\overline{\mathbf{C E A B}}_{\mathrm{n}}$	$\overline{\mathrm{LEAB}}_{\mathrm{n}}$	$\overline{\mathbf{O E A B}}_{\mathbf{n}}$		Latched
H	X	X	High Z	
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
A-to-B data flow shown; B-to-A flow control is the same, except using $\overline{\mathrm{CEBA}}_{n}, \overline{\mathrm{LEBA}}_{n}$ and $\overline{\mathrm{OEBA}}_{n}$

Logic Diagrams

Symbol	Parameter	Value	Conditions	Units
V_{Cc}	Supply Voltage	-0.5 to +4.6		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{0}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)	V
IK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
lok	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	mA
${ }^{1}$	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at HIGH State	mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at LOW State	
I_{CC}	DC Supply Current per Supply Pin	± 64		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128		mA
T ${ }_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	
I_{OH}	HIGH-Level Output Current		-32	
I_{OL}	LOW-Level Output Current		V	
T_{A}	Free-Air Operating Temperature	mA		
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-40	64	85

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.
Note 2: I_{O} Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
		(V)	Min	Max		
$\overline{\mathrm{V}_{\text {IK }}}$	Input Clamp Diode Voltage	2.7		-1.2	V	$\mathrm{I}_{1}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.7-3.6	2.0		V	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	2.7-3.6		0.8		
V_{OH}	Output HIGH Voltage	2.7-3.6	$\mathrm{V}_{\text {CC }}-0.2$		V	$\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		2.7	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$
		3.0	2.0		V	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	2.7		0.2	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
		2.7		0.5	V	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
		3.0		0.4	V	$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$
		3.0		0.5	V	$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$
		3.0		0.55	V	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$
$\mathrm{I}_{\text {(HOLD) }}$	Bushold Input Minimum Drive	3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$
(Note 3)			-75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=2.0 \mathrm{~V}$
$\mathrm{I}_{(\text {(OD) }}$	Bushold Input Over-Drive Current to Change State	3.0	500		$\mu \mathrm{A}$	(Note 4)
(Note 3)			-500		$\mu \mathrm{A}$	(Note 5)
I_{1}	Input Current	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$
	Control Pins	3.6		± 1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}
	Data Pins	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{1}=0 \mathrm{~V}$
	Data Pins	3.6		1	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$
IofF	Power Off Leakage Current	0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{IPU/PD}$	Power Up/Down 3-STATE Output Current	0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
lozL (Note 3)	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$
Iozl	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$
IozH (Note 3)	3-STATE Output Leakage Current	3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	3-STATE Output Leakage Current	3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$
$\mathrm{l}_{\text {OzH }}$	3-STATE Output Leakage Current	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
${ }^{\text {ICCH }}$	Power Supply Current	3.6		0.19	mA	Outputs HIGH
${ }_{\text {CCL }}$	Power Supply Current	3.6		5	mA	Outputs LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current	3.6		0.19	mA	Outputs Disabled
ICCZ^{+}	Power Supply Current	3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled
$\triangle \mathrm{l}_{\mathrm{CC}}$	Increase in Power Supply Current (Note 6)	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND

Note 3: Applies to bushold versions only (74LVTH16543)
Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH
Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND

Dynamic Switching Characteristics (Note 7)

Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	$\begin{gathered} \text { Conditions } \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$
		(V)	Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 8)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	3.3		-0.8		V	(Note 8)

Note 7: Characterized in SSOP package. Guaranteed parameter, but not tested.
Note 8: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.
74LVT16543•74LVTH16543

AC Electrical Characteristics

Symbol	Parameter		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$				Units
			$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$		
			Min	Max	Min	Max	
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay Data to Outputs		$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{LE}}$ to A or B		$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 4.7 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.8 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to A or B		$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 4.7 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.1 \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PHZ}} \\ & t_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to A or B		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.9 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.9 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{C E}$ to A or B		$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 4.6 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & 6.1 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{CE}}$ to A or B		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.9 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 4.9 \end{aligned}$	ns
t_{W}	Pulse Duration $\overline{\text { LE LOW }}$		3.3		3.3		ns
t_{S}	Setup Time	A or B before $\overline{\text { LE, Data HIGH }}$	0.5		0.5		ns
		A or B before $\overline{L E}$, Data LOW	0.8		1.3		
		A or B before $\overline{\mathrm{CE}}$, Data HIGH	0.5		0.0		
		A or B before $\overline{C E}$, Data LOW	0.6		1.1		
t_{H}	Hold Time	A or B after $\overline{L E}$, Data HIGH	1.5		0.7		ns
		A or B after $\overline{\mathrm{LE}}$, Data LOW	1.2		1.3		
		A or B after $\overline{\mathrm{CE}}$, Data HIGH	1.7		0.9		
		A or B after $\overline{\mathrm{CE}}$, Data LOW	1.6		1.8		
$\begin{aligned} & \mathrm{t}_{\mathrm{OSLH}} \\ & \mathrm{t}_{\mathrm{OSHL}} \end{aligned}$	Output to Output Skew (Note 9)			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$)
Capacitance (Note 10)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}, \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	pF	

Note 10: Capacitance is measured at frequency $f=1 \mathrm{MHz}$, per MIL-STD-883B, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted

