: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74LVX125

LOW VOLTAGE QUAD BUS BUFFERS (3-STATE) WITH 5V TOLERANT INPUTS

- HIGH SPEED: $\mathrm{t}_{\mathrm{PD}}=4.4 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 5V TOLERANT INPUTS
- POWER-DOWN PROTECTION ON INPUTS
- INPUT VOLTAGE LEVEL:
$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}\left(\mathrm{MAX}\right.$.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- LOW NOISE:
$\mathrm{V}_{\mathrm{OLP}}=0.3 \mathrm{~V}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- SYMMETRICAL OUTPUT IMPEDANCE: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
- BALANCED PROPAGATION DELAYS:
$t_{\text {PLH }} \cong \mathrm{t}_{\mathrm{PHL}}$
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2 \mathrm{~V}$ to 3.6 V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 125
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74LVX125 is a low voltage CMOS QUAD BUS BUFFERs fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for low power, battery operated and low noise 3.3 V applications.

ORDER CODES

PACKAGE	TUBE	T \& R
SOP	$74 \mathrm{LVX125M}$	74 LVX 125 MTR
TSSOP		74 LVX 125 TTR

This device requires the 3-STATE control input $\overline{\mathrm{G}}$ to be set high to place the output into the high impedance state.
Power down protection is provided on all inputs and 0 to 7 V can be accepted on inputs with no regard to the supply voltage. This device can be used to interface 5 V to 3 V . It combines high speed performance with the true CMOS low power consumption.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$1,4,10,13$	$1 \overline{\mathrm{G}}$ to $4 \overline{\mathrm{G}}$	Output Enable Inputs
$2,5,9,12$	1 A to 4 A	Data Inputs
$3,6,8,11$	1 Y to 4 Y	Data Outputs
7	GND	Ground (OV)
14	V $_{\text {CC }}$	Positive Supply Voltage

TRUTH TABLE

\mathbf{A}	$\overline{\mathbf{G}}$	\mathbf{Y}
X	H	Z
L	L	L
H	L	H
X:Don't Care Z High Impedance		

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	-20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 50	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	2 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to 5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time (note 2) $\left(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\right)$	0 to 100	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.2 V to 3.6 V
2) V_{IN} from 0.8 V to 2.0 V

DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0		1.5			1.5		1.5		V
		3.0		2.0			2.0		2.0		
		3.6		2.4			2.4		2.4		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	2.0				0.5		0.5		0.5	V
		3.0				0.8		0.8		0.8	
		3.6				0.8		0.8		0.8	
V_{OH}	High Level Output Voltage	2.0	$\mathrm{l}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	1.9	2.0		1.9		1.9		V
		3.0	$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	2.9	3.0		2.9		2.9		
		3.0	$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$	2.58			2.48		2.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	2.0	$\mathrm{l}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	V
		3.0	$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	
		3.0	$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}$			0.36		0.44		0.55	
I_{OZ}	High Impedance Output Leakage Current	3.6	$\begin{gathered} V_{I}=V_{I H} \text { or } V_{I L} \\ V_{\mathrm{O}}=V_{\mathrm{CC}} \text { or } G N D \end{gathered}$			± 0.25		± 2.5		± 5	$\mu \mathrm{A}$
1	Input Leakage Current	3.6	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND			± 0.1		± 1		± 1	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			2		20		20	$\mu \mathrm{A}$

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Low Voltage Quiet Output (note 1, 2)	3.3	$C_{L}=50 \mathrm{pF}$		0.3	0.5					V
$\mathrm{V}_{\text {OLV }}$				-0.5	-0.3						
$\mathrm{V}_{\text {IHD }}$	Dynamic High Voltage Input (note 1, 3)	3.3		2.0							
$\mathrm{V}_{\text {ILD }}$	Dynamic Low Voltage Input (note 1, 3)	3.3				0.8					

1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0 V to 3.3 V , $(\mathrm{n}-1)$ outputs switching and one output at GND.
3) Max number of data inputs (n) switching. ($n-1$) switching 0 V to 3.3 V . Inputs under test switching: 3.3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold $\left(V_{I H D}\right), f=1 \mathrm{MHz}$.

AC ELECTRICAL CHARACTERISTICS (Input $\left.t_{r}=t_{f}=3 n s\right)$

Symbol	Parameter	Test Condition			Value							Unit
		V_{Cc} (V)	$\begin{gathered} \mathrm{C}_{\mathrm{L}} \\ (\mathrm{pF}) \end{gathered}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay Time	2.7	15			5.8	10.1	1.0	13.5	1.0	14.5	ns
		2.7	50			8.3	13.6	1.0	17.0	1.0	18.0	
		$3.3{ }^{(*)}$	15			4.4	6.2	1.0	8.5	1.0	9.5	
		$3.3{ }^{*}$)	50			6.9	9.7	1.0	12.0	1.0	13.0	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	2.7	15			5.3	9.3	1.0	12.5	1.0	13.5	ns
		2.7	50			7.8	12.8	1.0	16.0	1.0	17.0	
		$3.3^{(*)}$	15			4.0	5.6	1.0	7.5	1.0	8.5	
		$3.3{ }^{(*)}$	50			6.5	9.1	1.0	11.0	1.0	12.0	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	2.7	50			10.0	15.7	1.0	19.0	1.0	20.0	ns
		$3.3{ }^{*}{ }^{*}$	50			8.3	11.2	1.0	13.0	1.0	14.0	
tosth toshl	Output to Output Skew Time (note 1,2)	2.7	50			0.5	1.0		1.5		1.5	ns
		$3.3{ }^{(*)}$	50			0.5	1.0		1.5		1.5	

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	3.3			4	10		10		10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	3.3			6						pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	3.3			14						pF

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C} / 4$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\text {PLZ }}$	V_{CC}
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

$C_{L}=15 / 50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R 1=1 K \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
WAVEFORM 1 : PROPAGATION DELAYS ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2 : OUTPUT ENABLE AND DISABLE TIME ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

SC09891

SO-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.68			0.026
S	8° (max.)					

TSSOP14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		$8 \circ$	$0{ }^{\circ}$		8
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

