

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

April 2016

74LVX3245 8-Bit, Dual-Supply Translating Transceiver with 3-State Outputs

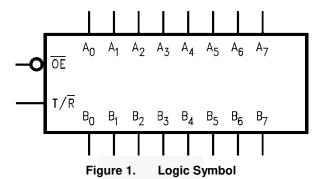
Features

- Bidirectional Interface Between 3 V and 5 V Buses
- Inputs Compatible with TTL Level
- 3 V Data Flow at A-Port and 5 V Data Flow at B-Port
- Outputs Source / Sink: 24 mA
- Guaranteed Simultaneous Switching Noise Level and Dynamic Threshold Performance
- Implements Proprietary EMI Reduction Circuitry
- Functionally Compatible with the 74 Series 245

Description

The 74LVX3245 is a dual-supply, 8-bit translating transceiver designed to interface between a 3 V bus and a 5 V bus in a mixed 5 V supply environment. The Transmit/ Receive (T/R) input determines the direction of data flow. Transmit (active-HIGH) enables data from A-ports to B-ports; receive (active-LOW) enables data from B-ports to A-ports. The output enable input, when HIGH, disables both A- and B-ports by placing them in a high-impedance condition. The A-port interfaces with the 3 V bus; the B-port interfaces with the 5 V bus.

The 74LVX3245 is suitable for mixed-voltage applications, such as notebook computers using 3.3 V CPU and 5V peripheral components.


Related Resources

 AN-5001 — Using Fairchild's LVX Low-Voltage Dual-Supply CMOS Translating Transceivers

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
74LVX3245QSC		24-Lead Quarter-Size Outline Package	Tubes
74LVX3245QSCX		(QSOP), JEDEC MO-137, 0.150" Wide	Tape and Reel
74LVX3245MTC	-40 to +85°C	24-Lead Thin-Shrink Small-Outline	Tubes
74LVX3245MTCX		Package (TSSOP), JEDEC MO-153, 4.4 mm Wide	Tape and Reel

Logic Symbol

Pin Configuration

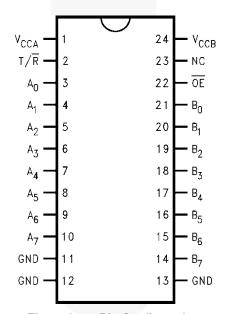


Figure 2. Pin Configuration

Pin Definitions

Pin #	Name	Description
1	V _{CCA}	Supply Voltage
2	T/R	Transmit/Receive Input
3, 4, 5, 6, 7, 8, 9, 10	$\begin{array}{c} A_0,A_1,A_2,A_3,A_4,\\ A_5,A_6,A_7 \end{array}$	Port-A Inputs or 3-State Outputs
11, 12, 13	GND	Ground
14, 15, 16, 17, 18, 19, 20, 21	$\begin{array}{c} B_7,B_6,B_5,B_4,B_3,\\ B_2,B_1,B_0 \end{array}$	Port-B Inputs or 3-State Outputs
22	/OE	Output Enable Input
23	NC	No Connect
24	V _{CCB}	Supply Voltage

Logic Diagram

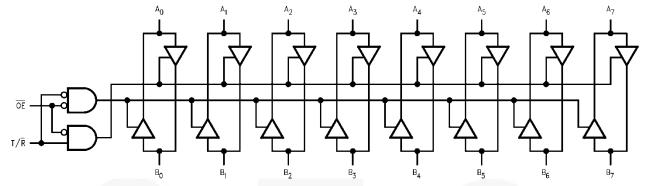


Figure 3. Logic Diagram

Table 1. Truth Table

Inp	outs	Outputs
/OE	T/R	
L /	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	X	HIGH-Z State

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	arameter		Min.	Max.	Unit
V _{CCA} , V _{CCB}	Supply Voltage			-0.5	7.0	V
V _{IN}	DC Input Voltage; (/OE, T/R)	(R)			V _{CCA} +0.5	٧
V	DC Input / Output Voltage			-0.5	V _{CCA} to +0.5	٧
V _{I/O}	Do input / Output voitage	B _n		-0.5	V _{CCB} to +0.5	v
I _{IN}	DC Input Diode Current (/OE and		±20	mA		
I _{OK}	DC Output Diode Current				±50	mA
Io	DC Output Source or Sink Currer	nt			±50	mA
		Output Pin			±50	
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	Maximum Current at	I _{CCA}		±100	mA
		Maximum Current at	I _{CCB}		±200	
T _{STG}	Storage Temperature Range			-65	+150	°C
I _{SINK}	DC Latch-Up Source or Sink Current			A)	±300	mA
TJ	Maximum Junction Temperature Under Bias			V	+150	°C
ESD	Electrostatic Discharge Capability	Human Body Model, JE	SD22-A114		2500	٧

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CCA}	Complex Vallages	7/	2.7	3.6	V
V _{CCB}	Supply Voltage		4.5	5.5	V
Vı	Input Voltage (/OE and T/R)	0	V _{CCA}	V	
V	DC Input / Output Voltage	\ n	0	V _{CCA}	V
$V_{I/O}$	DC Input / Output Voltage	0	V _{CCB}	V	
T _A	Operating Temperature, Free Air		-40	+85	°C
Δt / ΔV	Minimum Input Edge Rate (V $_{\text{IN}}$ from 30 to 70% of V $_{\text{CC}},$ V $_{\text{CC}}$ at 4.5 V, and 5.5 V)		8	ns/V	

Note:

1. Unused pins (inputs and I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

0	D		0	V _{CCA}	V _{CCB}	T _A = -	25°C	T _A =-40 to+85°C	11	
Symbol	Parame	eter	Conditions	(V)	(V)	Тур.	Guai	ranteed Limits	Unit	
		A _n , T/R ,		3.6	5.0		2.0	2.0		
V_{IHA}	Minimum	/OE	V _{OUT} ≤ 0.1 V or	2.7	5.0		2.0	2.0	.,	
.,	HIGH Level Input Voltage	5	≥ V _{CC} - 0.1 V	3.3	4.5		2.0	2.0	V	
V_{IHB}	par vallage	B _n		3.3	5.5		2.0	2.0		
		A _n , T/R ,		3.6	5.0		0.8	0.8		
V_{ILA}	Minimum	/OE	V _{OUT} ≤ 0.1 V or	2.7	5.0		0.8	0.8	.,	
	LOW Level Input Voltage	Б	≥ V _{CC} - 0.1 V	3.3	4.5		0.8	0.8	V	
V_{ILB}	par vallage	B _n		3.3	5.5		0.8	0.8		
			I _{OUT} =-100 μA	3.0	4.5	2.99	2.90	2.90		
.,			I _{OH} =-24 mA	3.0	4.5	2.65	2.35	2.25		
V_{OHA}	Minimum HIG	H Level	I _{OH} =-12 mA	2.7	4.5	2.50	2.30	2.20	.,	
	Output Voltag		I _{OH} =-24 mA	2.7	4.5	2.30	2.10	2.00	V	
.,			I _{OUT} =-100 μA	3.0	4.5	4.50	4.40	4.40		
V_{OHB}			I _{OH} =-24 mA	3.0	4.5	4.25	3.86	3.76		
7			I _{OUT} =100 μA	3.0	4.5	0.002	0.100	0.100		
	7		I _{OH} =24 mA	3.0	4.5	0.210	0.360	0.440		
V_{OLA}	Minimum LOV	V Level	I _{OH} =12 mA	2.7	4.5	0.110	0.360	0.440	V	
	Output Voltag	е	I _{OH} =24 mA	2.7	4.5	0.220	0.420	0.500		
.,			Ι _{ΟυΤ} =100 μΑ	3.0	4.5	0.002	0.100	0.100		
V_{OLB}			I _{OH} =24 mA	3.0	4.5	0.180	0.360	0.440		
I _{IN}	Maximum Inpl Leakage Curr /OE, T/R		V _{IN} =V _{CCB} , GND	3.6	5.5		±0.1	±1.0	μА	
I _{OZA}	Maximum 3-S Output Leaka		V _{IN} =V _{IL} , V _{IH} ; /OE= V _{CCA} ; V _O =V _{CCA} , GND	3.6	5.5		±0.5	±5.0	μА	
l _{ОZВ}	Maximum 3-S Output Leaka		$V_{IN}=V_{IL}, V_{IH};$ $/OE=V_{CCA};$ $V_{O}=V_{CCB}, GND$	3.6	5.5		±0.5	±5.0	μΑ	
	Maximum	B _n	V _{IN} =V _{CCB} -2.1 V	3.6	5.5	1.00	1.35	1.50		
Δlcc	Maximum I _{CCT} /Input at A _n , T/R , /OE		V _{IN} =V _{CCA} -0.6 V	3.6	5.5	4	0.35	0.50	mA	
I _{CCA}	Quiescent V _{CCA} Supply Current		$\begin{array}{l} A_n = V_{CCA} \text{ or GND,} \\ B_n = V_{CCB} \text{ or GND,} \\ /OE = GND, \\ T/R = GND \end{array}$	3.6	5.5		5	50		
Іссв	Quiescent V _{CCB} Supply Current		$\begin{array}{l} A_n = V_{CCA} \text{ or GND,} \\ B_n = V_{CCB} \text{ or GND,} \\ /OE = GND, \\ T/R = V_{CCA} \end{array}$	3.6	5.5		8	80	μΑ	

Continued on the following page...

DC Electrical Characteristics (Continued)

Cumbal	Parameter	Conditions	V _{CCA}	V _{CCB}	T _A = -25°C	T _A =-	40 to+85°C	Unit
Symbol	Parameter	Conditions	(V)	(V)	Тур.		Guaranteed Limits	
V _{OLPA}	Quiet Output Maximum		3.3	5.0		0.8		V
V _{OLPB}	Quiet Output Maximum Dynamic V _{OL} ^(2, 3)		3.3	5.0		1.5		V
V _{OLVA}	Quiet Output Minimum Dynamic V _{OL} ^(2, 3)		3.3	5.0		-0.8		V
V _{OLVB}	Dynamic V _{OL} ^(2, 3)		3.3	5.0		-1.2		V
V _{IHDA}	Minimum HIGH Level		3.3	5.0		2.0		
V _{IHDB}	Dynamic Input Voltage ^(2, 4)		3.3	5.0		2.0		V
V _{ILDA}	Maximum LOW Level		3.3	5.0		0.8		
V _{ILDB}	Dynamic Input Voltage ^(2, 4)		3.3	5.0		0.8		V

Notes:

- Worst-case package.
- Maximum number of outputs defined as (n). Data inputs are driven 0 V to V_{CC} level; one output at GND. Maximum number of data inputs (n) switching. (n-1) inputs switching 0 V to V_{CC} level. Input-under-test switching; V_{CC} level to threshold (V_{IHD}), 0V to threshold (V_{ILD}), f=1 MHz.

AC Electrical Characteristics

Symbol	Parameter	T _A =+25°C, C _L =50 pF, V _{CCA} =3.3 V ⁽⁵⁾ , V _{CCB} =5.0 V ⁽⁶⁾		C _L =5 V _{CCA} =3	o +85°C, 0 pF, 3.3 V ⁽⁵⁾ , 5.0 V ⁽⁶⁾	T _A =-40 to +85°C, C _L =50 pF, V _{CCA} =2.7 V, V _{CCB} =5.0 V		Unit	
		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
	Propagation	1.0	5.4	8.0	1.0	8.5	1.0	9.0	
	Delay A to B	1.0	5.6	7.5	1.0	8.0	1.0	8.5	,,,
lPHL, lPLH	Propagation Delay B to A	1.0	5.1	7.5	1.0	8.0	1.0	8.5	ns
		1.0	5.7	7.5	1.0	8.0	1.0	8.5	
	Output Enable	1.0	4.8	8.0	1.0	8.5	1.0	9.0	
	Time /OE to B	1.0	6.3	8.5	1.0	9.0	1.0	9.5	,,,
t_{PZL}, t_{PZH}	Output Enable	1.0	6.3	8.5	1.0	9.0	1.0	9.5	ns
	Time /OE to A	1.0	6.8	9.0	1.0	9.5	1.0	10.0	
1	Output Disable	1.0	5.3	7.5	1.0	8.0	1.0	8.5	
	Time /OE to B	1.0	4.2	7.0	1.0	7.5	1.0	8.0]
lPHZ, lPLZ	Output Disable Time /OE to A	1.0	5.3	8.0	1.0	8.5	1.0	9.0	ns
		1.0	3.7	6.5	1.0	7.0	1.0	7.5	
toshl, toslh	Output to Output Skew, Data to Output ⁽⁷⁾		1.0	1.5		1.5		1.5	ns

Notes:

- Voltage range 3.3 V is 3.3 V \pm 0.3 V. Voltage range 5.0 V is 5.0 V \pm 0.5 V.
- Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (toslh). Parameter guaranteed by design.

Capacitance

Symbol	Parameter		Conditions	Тур.	Unit
C _{IN}	Input Capacitance	V _{CC} = Open	4.5	pF	
C _{I/O}	Input / Output Capacitance		V _{CCA} = 3.3 V, V _{CCB} = 5.0 V	15	pF
C	Power Dissipation Capacitance ⁽⁸⁾	A to B	$V_{CCA} = 3.3 \text{ V},$	55	nE
OPD	C _{PD} Power Dissipation Capacitance ⁽⁸⁾		$V_{CCB} = 5.0 \text{ V}$	40	pF

Note:

8. C_{PD} is measured at 10 MHz.

8-Bit Dual-Supply Translating Transceiver

The 74LVX3245 is a dual-supply device capable of bidirectional signal translation. This level shifting ability provides an efficient interface between low-voltage CPU local bus with memory and a standard bus defined by 5 V I/O levels. The device control inputs can be controlled by the low-voltage CPU and core logic or a bus arbitrator with 5 V I/O levels.

Manufactured on a sub-micron CMOS process, the 74LVX3245 is ideal for mixed voltage applications such as notebook computers using 3.3 V CPUs and 5 V peripheral devices.

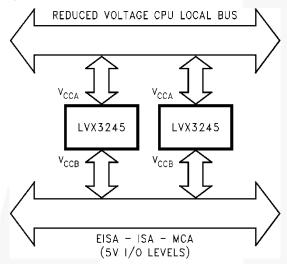
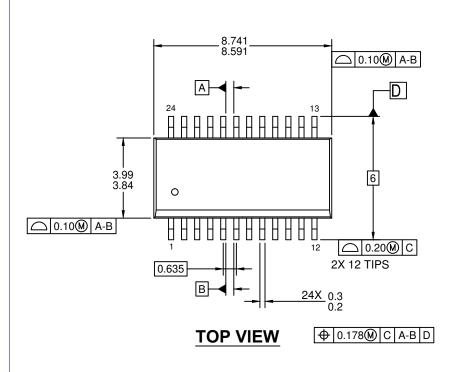
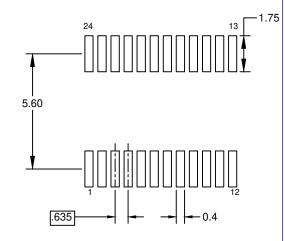


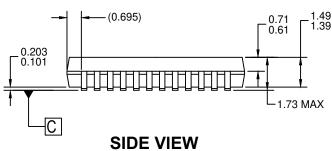
Figure 4. Application Example

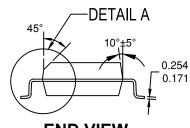
Power-Up Considerations


To ensure that the system does not experience unnecessary I_{CC} current draw, bus contention, or oscillations during power up; the following guidelines should be followed to *(refer to Table 2)*:

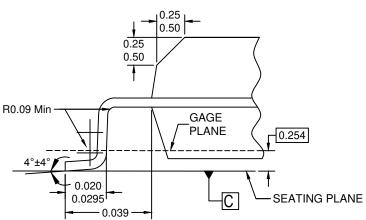

- Power up the control side of the device first (V_{CCA}).
- /OE should ramp with or ahead of V_{CCA}. This helps guard against bus contention.
- The Transmit/Receive (T/R) control pin should ramp with V_{CCA}. This ensures that the A-port data pins are configured as inputs. With V_{CCA} receiving power first, the I/O port should be configured as an input to help guard against bus contention and oscillations.
- A-side data inputs should be driven to a valid logic level. This prevents excessive current draw.

The above steps ensure that there are no bus contentions or oscillations, and therefore no excessive current draw occurs during the power-up cycling. These steps help prevent possible damage to the translator devices and potential damage to other system components.


Table 2. Low Voltage Translator Power-Up Sequencing

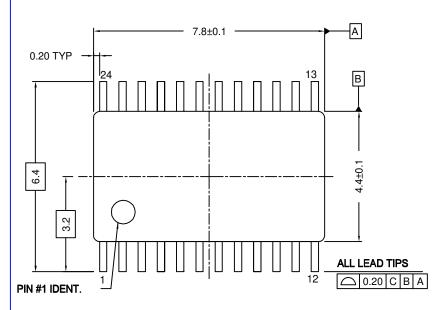

Device	V _{CCA}	V _{CCB}	T/R	/OE	A-Side I/O	B-Side I/O	Floatable Pin Allowed
74LVX3245	3 V (Power-Up First)	5 V Configurable	Ramp with V_{CCA}	Ramp with V _{CCA}	Logic 0 V or V _{CCA}	Outputs	No

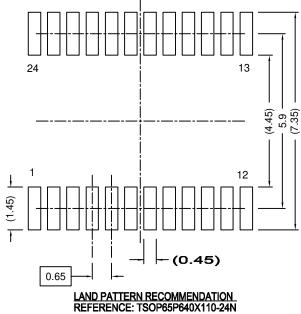
LAND PATTERN RECOMMENDATION

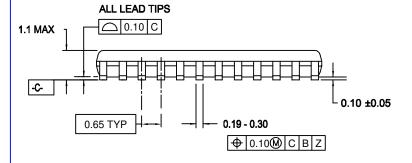


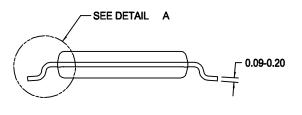
END VIEW

NOTES:

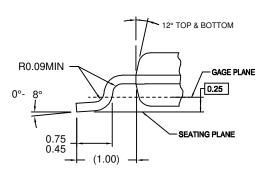

- A. THIS PACKAGE CONFORMS TO JEDEC M0-137 VARIATION AE
- B. ALL DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 2009.
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- E. LAND PATTERN STANDARD: SOP63P600X175-24M.
- F. DRAWING FILE NAME: MKT-MQA24rev3




DETAIL A



	REVISIONS						
LTR	DESCRIPTION	EDCN	DATE	BY/APP'D			
	CHANGE TO FSPM DRAWING FORMAT N LEAD SHIFT TOL. FROM 0.13MM TO 0.10MM	ECN-MTC24REV4	21/12/2006	H.ALLEN			



DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AD, DATE 10/97.
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994
- E. DRAWING FILE NAME: MTC24REV4

MTC24REV4

DETAIL A

APPROVALS DRAWN FEITAN	DATE 8-10-99	FAIRC			Bayan 11900,	Lepas, FIZ, , Penang, Malaysia.	
DFT@. CHK. H.ALLEN ENGR. CHK.	21-12-2006						
PROJECTIO	SCALE N/A	SIZE A4	DRAWING NUMBER MKT-MTC24			REV 4	
INCH IMMI	DO NOT SCALE DRAWING SHEET 1 of 1					1	

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative