imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FAIRCHILD

SEMICONDUCTOR®

74LVXC3245 8-Bit Dual Supply Configurable Voltage Interface Transceiver with 3-STATE Outputs

Features

- Bidirectional interface between 3V and 3V-to-5V buses
- Control inputs compatible with TTL level
- Outputs source/sink up to 24 mA
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Implements proprietary EMI reduction circuitry
- Flexible V_{CCB} operating range
- Allows B Port and V_{CCB} to float simultaneously when OE is HIGH
- Functionally compatible with the 74 series 245

General Description

The LVXC3245 is a 24-pin dual-supply, 8-bit configurable voltage interface transceiver suited for PCMCIA and other real time configurable I/O applications. The V_{CCA} pin accepts a 3V supply level. The A Port is a dedicated 3V port. The V_{CCB} pin accepts a 3V-to-5V supply level. The B Port is configured to track the V_{CCB} supply level respectively. A 5V level on the V_{CC} pin will configure the I/O pins at a 5V level and a 3V V_{CC} will configure the I/O pins at a 3V level. The A Port should interface with a 3V host system and the B Port to the card slots. This device will allow the V_{CCB} voltage source pin and I/O pins on the B Port to float when \overline{OE} is HIGH. This feature is necessary to buffer data to be inserted and removed during normal operation.

Ordering Code:

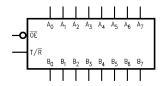
Order Number	Package Number	Package Description
74LVXC3245WM	M24B	224-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVXC3245QSC	MQA24	24-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
74LVXC3245MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Description

Logic Symbol/s

Pin Descriptions


Pin Names

OE

T/R

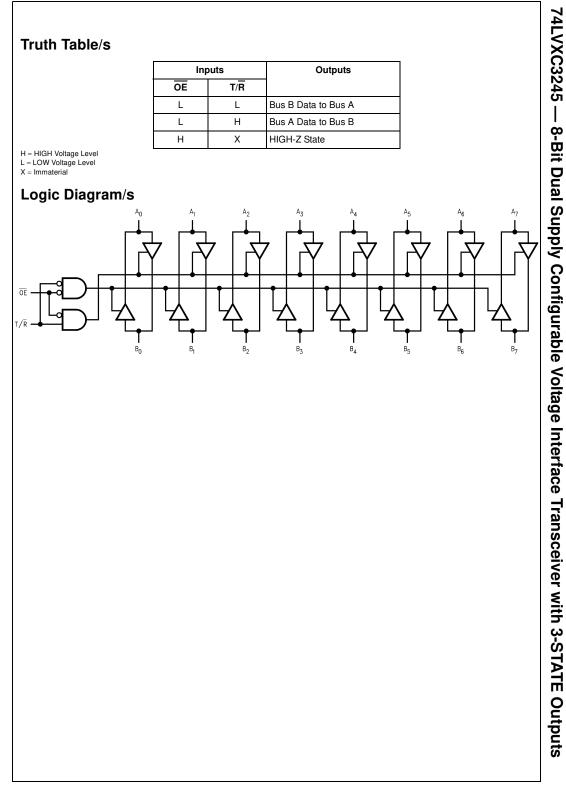
 $A_0 - A_7$

B₀-B₇

Output Enable Input

Transmit/Receive Input

Side A Inputs or 3-STATE Outputs


Side B Inputs or 3-STATE Outputs

Connection Diagram/s

		· · ·		
V _{CCA} —	1	\bigcirc	24	— v _{ссв}
T/R —	2		23	- NC
A ₀ —	3		22	- OE
A1 -	4		21	— B ₀
A2 -	5		20	— в ₁
A3 -	6		19	— в ₂
A4 -	7		18	— B ₃
A5 -	8		17	— В ₄
A ₆ —	9		16	— в ₅
A7 -	10		15	— в ₆
GND —	11		14	— В ₇
GND —	12		13	— GND

February 2009

© 1994 Fairchild Semiconductor Corporation

Absolute	Maximum	Ratings(Note 1)
----------	---------	-----------------

Supply Voltage (V _{CCA} , V _{CCB})	-0.5V to +7.0V
DC Input Voltage (V) @ \overline{OE} , T/ \overline{R}	-0.5V to V _{CCA} $+0.5V$
DC Input/Output Voltage (V _{I/O})	
@ A _n	$-0.5V$ to V_{CCA} +0.5V
@ B _n	$-0.5V$ to V_{CCB} +0.5V
DC Input Diode Current (IIK)	
@ 0E, T/R	±20 mA
DC Output Diode (I _{OK}) Current	±50 mA
DC Output Source or Sink Current (I_O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
and Max Current	±200 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
DC Latch-Up Source or Sink Current	±300 mA

Recommended Operating Conditions (Note 2)								
Supply Voltage								
V _{CCA}	2.7V to 3.6V							
V _{CCB}	3.0V to 5.5V							
Input Voltage (V _I) @ OE, T/R	0V to V _{CCA}							
Input Output Voltage (VI/O)								
@ A _n	0V to V _{CCA}							
@ B _n	0V to V _{CCB}							
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$							
Minimum Input Edge Rate ($\Delta t / \Delta V$)	8 ns/V							
V_{IN} from 30% to 70% of V_{CC}								
V _{CC} @ 3.0V, 4.5V, 5.5V								
Note 1: The "Absolute Maximum Ratings" are those the safety of the device cannot be guaranteed. The operated at these limits. The parametric values de Characteristics tables are not guaranteed at the abso	e device should not be efined in the Electrical							

DC Electrical Characteristics

Abso	Absolute Maximum Ratings(Note 1)						Recommended Operating					
Supply Voltage (V _{CCA} , V _{CCB}) -0.5V to +7.0V						Conditions (Note 2)						
	ut Voltage (VI) @		-0.5	5V to V _{CC/}	40.5V	Supply Voltage						
DC Inpu	ut/Output Voltage	e (V _{I/O})		004		V _{CCA}			2.7V to 3.6V			
@ A _n		(1/0/	-0.5	–0.5V to V _{CCA} +0.5V		V _{CCB}			3.0V to 5.5V			
@ B _n				5V to V _{CCE}			ltage (VI) @ OE, T/R	R	0V to V _{CCA}			
DC Input Diode Current (I _{IK})					5	•	utput Voltage (V _{I/O})	-				
$O\overline{OE}$, T/R				-	±20 mA	@ A _n			0V to V _{CCA}			
DC Output Diode (I _{OK}) Current					50 mA	@ B _n			0V to V _{CCB}			
	put Source or Sir		(I_a)		±50 mA	- 11	Operating Temperat		••-			
-	or Ground Curre	-	.0)	-	200 111/1		n Input Edge Rate (A		-40 0 t0 +05 0 8 ns/V			
	utput Pin (I _{CC} or			_	±50 mA		om 30% to 70% of V_0	,	0113/ 1			
	Aax Current	'GND/			200 mA		•	CC				
	Temperature Ra			±4 -65°C to			3.0V, 4.5V, 5.5V	inge" oro H	hose values beyond which			
-	ch-Up Source or				300 mA	the safety of operated at Characterist The "Recom for actual de	of the device cannot be gue these limits. The parame- tics tables are not guarantee nmended Operating Condi- avice operation.	uaranteed. etric value eed at the a itions" table	The device should not be s defined in the Electrical absolute maximum ratings. e will define the conditions			
DC F	Electrical C	Charact	terist	ics			may not float.		os) must be held HIGH or			
		Jiiaiao			-	= 25°C	T _A = -40°C to +85°C		T			
Symbol	Paramet	ter	V _{CCA}	V _{CCB} (V)	~		aranteed Limits	Units	Conditions			
ина	Minimum HIGH	A _n ,	(V) 2.7	3.0	Тур	2.0	2.0		$V_{OUT} \le 0.1V$			
IHA	Level Input	OE	3.0	3.6		2.0	2.0		or			
	Voltage	T/R	3.6	5.5		2.0	2.0		≥V _{CC} – 0.1V			
IHB	- °	Bn	2.7	3.0		2.0	2.0	V	00			
110			3.0	3.6		2.0	2.0					
			3.6	5.5		3.85	3.85					
	Maximum LOW	A _n ,	2.7	3.0		0.8	0.8		$V_{OUT} \le 0.1V$			
ILA												
ILA	Level Input	OE	3.0	3.6		0.8	0.8		or			
ILA			3.0 3.6	3.6 5.5		0.8 0.8	0.8 0.8	v	or $\geq V_{CC} - 0.1V$			
	Level Input	OE						v	-			
	Level Input	OE T/R	3.6 2.7 3.0	5.5 3.0 3.6		0.8 0.8 0.8	0.8 0.8 0.8	v	-			
/ _{ILB}	Level Input Voltage	OE T/R B _n	3.6 2.7 3.0 3.6	5.5 3.0 3.6 5.5		0.8 0.8 0.8 1.65	0.8 0.8 0.8 1.65	v	≥V _{CC} – 0.1V			
/ _{ILA} / _{ILB} / _{OHA}	Level Input Voltage Minimum HIGH Lo	OE T/R B _n	3.6 2.7 3.0 3.6 3.0	5.5 3.0 3.6 5.5 3.0	2.99	0.8 0.8 0.8 1.65 2.9	0.8 0.8 0.8 1.65 2.9	V	≥V _{CC} - 0.1V			
/ _{ILB}	Level Input Voltage	OE T/R B _n	3.6 2.7 3.0 3.6 3.0 3.0 3.0	5.5 3.0 3.6 5.5 3.0 3.0	2.85	0.8 0.8 1.65 2.9 2.56	0.8 0.8 0.8 1.65 2.9 2.46		≥V _{CC} - 0.1V I _{OUT} = -100 μA I _{OH} = -12 mA			
/ _{ILB}	Level Input Voltage Minimum HIGH Lo	OE T/R B _n	3.6 2.7 3.0 3.6 3.0 3.0 3.0 3.0	5.5 3.0 3.6 5.5 3.0 3.0 3.0	2.85 2.65	0.8 0.8 1.65 2.9 2.56 2.35	0.8 0.8 1.65 2.9 2.46 2.25	v	$\geq V_{CC} - 0.1V$ $I_{OUT} = -100 \ \mu A$ $I_{OH} = -12 \ m A$ $I_{OH} = -24 \ m A$			
ILB	Level Input Voltage Minimum HIGH Lo	OE T/R B _n	3.6 2.7 3.0 3.6 3.0 3.0 3.0 3.0 2.7	5.5 3.0 3.6 5.5 3.0 3.0 3.0 3.0 3.0	2.85 2.65 2.5	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3	0.8 0.8 1.65 2.9 2.46 2.25 2.2		$\geq V_{CC} - 0.1V$ $I_{OUT} = -100 \ \mu A$ $I_{OH} = -12 \ m A$ $I_{OH} = -24 \ m A$ $I_{OH} = -12 \ m A$			
OHA	Level Input Voltage Minimum HIGH Lo	OE T/R B _n	3.6 2.7 3.0 3.6 3.0 3.0 3.0 2.7 2.7	5.5 3.0 3.6 5.5 3.0 3.0 3.0 3.0 4.5	2.85 2.65 2.5 2.3	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.3 2.1	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0		$\geq V_{CC} - 0.1V$ $I_{OUT} = -100 \ \mu A$ $I_{OH} = -12 \ m A$ $I_{OH} = -24 \ m A$ $I_{OH} = -12 \ m A$ $I_{OH} = -24 \ m A$			
(ilb (она	Level Input Voltage Minimum HIGH Lo	OE T/R B _n	3.6 2.7 3.0 3.6 3.0 3.0 2.7 2.7 3.0	5.5 3.0 3.6 5.5 3.0 3.0 3.0 3.0 4.5 3.0	2.85 2.65 2.5 2.3 2.99	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.3 2.1 2.9	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9	v	$ \begin{split} \geq & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ \\ & I_{OH} = -24 \ m A \\ \\ & I_{OUT} = -100 \ \mu A \end{split} $			
/ _{ILB} / _{OHA}	Level Input Voltage Minimum HIGH Lo	OE T/R B _n	3.6 2.7 3.0 3.6 3.0 3.0 3.0 2.7 2.7 3.0 3.0 3.0	5.5 3.0 3.6 5.5 3.0 3.0 3.0 3.0 4.5 3.0 3.0 3.0 3.0	2.85 2.65 2.5 2.3 2.99 2.85	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46		$\begin{split} \ge & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ \\ & I_{OH} = -120 \ \mu A \\ & I_{OH} = -12 \ m A \end{split}$			
/ _{ILB} / _{OHA}	Level Input Voltage Minimum HIGH Lo	OE T/R B _n	3.6 2.7 3.0 3.6 3.0 3.0 2.7 2.7 3.0	5.5 3.0 3.6 5.5 3.0 3.0 3.0 3.0 4.5 3.0	2.85 2.65 2.5 2.3 2.99	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.3 2.1 2.9	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9	v	$\begin{split} \ge & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ \\ & I_{OH} = -24 \ m A \end{split}$			
(она (она	Level Input Voltage Minimum HIGH Lo	OE T/R Bn evel	3.6 2.7 3.0 3.6 3.0 3.0 2.7 2.7 3.0 3.0 3.0 3.0 3.0	5.5 3.0 3.6 5.5 3.0 3.0 3.0 4.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0	2.85 2.65 2.5 2.3 2.99 2.85 2.65 4.25	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35 3.86	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25	v	$\begin{split} \ge & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \end{split}$			
(она (она	Level Input Voltage Minimum HIGH Lu Output Voltage	OE T/R Bn evel	3.6 2.7 3.0 3.6 3.0 3.0 2.7 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0	5.5 3.0 3.6 5.5 3.0 3.0 3.0 4.5 3.0 3.0 3.0 4.5	2.85 2.65 2.5 2.3 2.99 2.85 2.65	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25 3.76	v	$\begin{split} \ge & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ \\ & I_{OH} = -24 \ m A \end{split}$			
(она (она	Level Input Voltage Minimum HIGH Lu Output Voltage Maximum LOW Lu	OE T/R Bn evel	3.6 2.7 3.0 3.6 3.0 3.0 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	5.5 3.0 3.6 5.5 3.0 3.0 3.0 3.0 4.5 3.0 3.0 3.0 4.5 3.0	2.85 2.65 2.5 2.3 2.99 2.85 2.65 4.25 0.002	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35 3.86 0.1	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25 3.76 0.1	v	$\begin{split} \ge & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ \\ \\ & I_{OL} = 24 \ m A \end{split}$			
/ilb /она /онв	Level Input Voltage Minimum HIGH Lu Output Voltage Maximum LOW Lu	OE T/R Bn evel	3.6 2.7 3.0 3.6 3.0 3.0 2.7 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	5.5 3.0 3.6 5.5 3.0	2.85 2.65 2.5 2.99 2.85 2.65 4.25 0.002 0.21	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35 3.86 0.1 0.36	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25 3.76 0.1 0.44	v	$\begin{split} \ge & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ \\ & I_{OH} = -21 \ m A \\ & I_{OH} = -24 \ m A \\ \\ & I_{OH} = -24 \ $			
/ _{ILB} / _{ОНА} / _{ОНВ}	Level Input Voltage Minimum HIGH Lu Output Voltage Maximum LOW Lu	OE T/R Bn evel	3.6 2.7 3.0 3.0 3.0 2.7 2.7 3.0	5.5 3.0 3.6 5.5 3.0	2.85 2.65 2.5 2.3 2.99 2.85 2.65 4.25 0.002 0.21 0.11	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35 3.86 0.1 0.36	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25 3.76 0.1 0.44 0.44	v	$\begin{split} \ge & V_{CC} - 0.1V \\ \\ \hline & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OL} = 24 \ m A \\ & I_{OL} = 12 \ m A \end{split}$			
(она (она (онв	Level Input Voltage Minimum HIGH Lu Output Voltage Maximum LOW Lu	OE T/R Bn evel	3.6 2.7 3.0	5.5 3.0 3.6 5.5 3.0	2.85 2.65 2.3 2.99 2.85 2.65 4.25 0.002 0.21 0.11 0.22	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35 3.86 0.1 0.36 0.42	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25 3.76 0.1 0.44 0.44 0.5	v	$\begin{split} \ge & V_{CC} - 0.1V \\ \\ \hline & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OL} = 24 \ m A \\ & I_{OL} = 12 \ m A \\ & I_{OL} = 12 \ m A \\ & I_{OL} = 24 \ m A \end{split}$			
/ _{ILB}	Level Input Voltage Minimum HIGH Lu Output Voltage Maximum LOW Lu	OE T/R Bn evel	3.6 2.7 3.0	5.5 3.0 3.6 5.5 3.0	2.85 2.65 2.5 2.99 2.85 2.65 4.25 0.002 0.21 0.11 0.22 0.002	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35 3.86 0.1 0.36 0.42 0.1	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25 3.76 0.1 0.44 0.44 0.5 0.1	v v v	$ \begin{split} \geq & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OL} = 24 \ m A \\ & I_{OL} = 12 \ m A \\ & I_{OL} = 12 \ m A \\ & I_{OL} = 24 \ m A \\ & I_{OL} = 12 \ m A \\ & I_{OL} = 12 \ m A \\ & I_{OL} = 100 \ \mu A \end{split} $			
/ _{ILB} / _{OHA}	Level Input Voltage Minimum HIGH Lu Output Voltage Maximum LOW Lu	OE T/R Bn evel	3.6 2.7 3.0	5.5 3.0 3.6 5.5 3.0	2.85 2.65 2.3 2.99 2.85 2.65 4.25 0.002 0.21 0.11 0.22 0.002 0.21	0.8 0.8 0.8 1.65 2.9 2.56 2.35 2.3 2.1 2.9 2.56 2.35 3.86 0.1 0.36 0.42 0.1 0.36	0.8 0.8 0.8 1.65 2.9 2.46 2.25 2.2 2.0 2.9 2.46 2.25 3.76 0.1 0.44 0.5 0.1 0.44	v v v	$ \begin{split} \geq & V_{CC} - 0.1V \\ \\ & I_{OUT} = -100 \ \mu A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -12 \ m A \\ & I_{OH} = -24 \ m A \\ & I_{OL} = 24 \ m A \\ & I_{OL} = 12 \ m A \\ & I_{OL} = 24 \ m A \\ \\ & I_{OL} = 24 \ m A \\ \\ & I_{OL} = 24 \ m A \\ \\ & I_{OL} = 24 \ m A \\ \\ \\ & I_{OL} = 24 \ m A \\ \\ \\ \\ & I_{OL} = 24 \ m A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			

74LVXC3245

DC Electrical Characteristics (Continued)

 $T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ V_{CCB} V_{CCA} Symbol Parameter Units Conditions (V) (V) **Guaranteed Limits** Тур Maximum 3-STATE 3.6 3.6 ±5.0 $V_I=V_{IL},\ V_{IH},$ ±0.5 I_{OZA} $\overline{OE} = V_{CCA}$ Output Leakage 3.6 5.5 ±0.5 ±5.0 μA @ A_n $V_O = V_{CCA}, \text{ GND}$ Maximum 3-STATE +5.0 $V_I=V_{IL},\ V_{IH},$ 3.6 3.6 +0.5I_{OZB} $\overline{OE} = V_{CCA}$ Output Leakage 3.6 5.5 ±0.5 ±5.0 uΑ @ B_n $V_O = V_{CCB}, \ GND$ $V_I = V_{CCB} - 2.1V$ ΔI_{CC} Maximum Bn 3.6 5.5 1.0 1.35 1.5 mA I_{CC}/Input All Inputs 3.6 $V_{I} = V_{CC} - 0.6V$ 3.6 0.35 0.5 $A_n = V_{CCA} \text{ or } GND$ Quiescent V_{CCA} I_{CCA1} Supply Current 5 50 $B_n = Open, \overline{OE} = V_{CCA},$ 3.6 Open μA as B Port Floats $T/R = V_{CCA}, V_{CCB} =$ Open Quiescent V_{CCA} $\mathbf{A}_n = \mathbf{V}_{\mathbf{CCA}} \text{ or } \mathbf{GND},$ 3.6 3.6 50 5 I_{CCA2} Supply Current 3.6 5.5 5 50 $B_n = V_{CCB}$ or GND, μΑ $\overline{OE} = GND, T/\overline{R} = GND$ 50 $A_n = V_{CCA} \text{ or } GND,$ I_{CCB} Quiescent V_{CCB} 3.6 3.6 5 Supply Current 3.6 5.5 8 80 $\mathbf{B}_n = \mathbf{V}_{CCB} \text{ or } \mathbf{GND},$ μΑ $\overline{OE} = GND, T/\overline{R} = V_{CCA}$ Quiet Output 3.3 3.3 0.8 (Note 3)(Note 4) VOLPA ۷ Maximum Dynamic 3.3 5.0 0.8 V_{OLPB} V_{OL} 3.3 3.3 0.8 (Note 3)(Note 4) v 3.3 5.0 1.5 VOLVA Quiet Output 3.3 3.3 -0.8 (Note 3)(Note 4) V Minimum Dynamic 3.3 5.0 -0.8 VOLVB VOL 3.3 3.3 -0.8 (Note 3)(Note 4) V 3.3 5.0 -1.2 Minimum HIGH VIHDA 3.3 3.3 2.0 (Note 3)(Note 5) v Level Dynamic 2.0 3.3 5.0 VIHDB Input Voltage 3.3 3.3 2.0 (Note 3)(Note 5) V 3.3 5.0 3.5 VILDA Maximum LOW 3.3 3.3 0.8 (Note 3)(Note 5) v Level Dynamic 3.3 5.0 0.8 VILDB 3.3 3.3 Input Voltage 0.8 (Note 3)(Note 5) V 3.3 5.0 1.5

Note 3: Worst case package.

Note 4: Max number of outputs defined as (n). Data inputs are driven 0V to V_{CC} level; one output at GND.

Note 5: Max number of Data Inputs (n) switching. (n-1) inputs switching 0V to V_{CC} level. Input-under-test switching:

 V_{CC} level to threshold (V_{IHD}), 0V to threshold (V_{ILD}), f = 1 \mbox{ MHz}.

Symbol		$T_{A} = +25^{\circ}C$ $C_{L} = 50 \text{ pF}$ $V_{CCA} = 2.7V-3.6V$ $V_{CCB} = 4.5V-5.5V$			$T_A = -40^\circ$	C to +85°C	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$						
					$C_L = 50 \text{ pF}$ $V_{CCA} = 2.7V - 3.6V$ $V_{CCB} = 4.5V - 5.5V$		C _L = 50 pF V _{CCA} = 2.7V–3.6V V _{CCB} = 3.0V–3.6V			$C_L = 50 \text{ pF}$ $V_{CCA} = 2.7V-3.6V$ $V_{CCB} = 3.0V-3.6V$		Units				
	Parameter															
Symbol	Farameter															
		Min	Min	Min	Min	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	
			(Note 6)					(Note 7)								
t _{PHL}	Propagation Delay	1.0	4.8	8.0	1.0	8.5	1.0	5.5	8.5	1.0	9.0	ns				
t _{PLH}	A to B	1.0	3.9	6.5	1.0	7.0	1.0	5.2	8.0	1.0	8.5					
t _{PHL}	Propagation Delay	1.0	3.8	6.5	1.0	7.0	1.0	4.4	7.0	1.0	7.5	ns				
t _{PLH}	B to A	1.0	4.3	7.5	1.0	8.0	1.0	5.1	7.5	1.0	8.0					
t _{PZL}	Output Enable Time	1.0	4.7	8.0	1.0	8.5	1.0	6.0	9.0	1.0	9.5	<u> </u>				
t _{PZH}	OE to B	1.0	4.8	8.5	1.0	9.0	1.0	6.1	9.5	1.0	10.0	ns				
t _{PZL}	Output Enable Time	1.0	5.9	9.5	1.0	10.0	1.0	6.4	10.0	1.0	10.5	ns				
t _{PZH}	OE to A	1.0	5.4	9.0	1.0	9.5	1.0	5.8	9.0	1.0	9.5	115				
t _{PHZ}	Output Disable Time	1.0	4.0	8.0	1.0	8.5	1.0	6.3	9.5	1.0	10.0					
t _{PLZ}	OE to B	1.0	3.8	7.5	1.0	8.0	1.0	4.5	8.0	1.0	8.5	ns				
t _{PHZ}	Output Disable Time	1.0	4.6	9.5	1.0	10.0	1.0	5.2	9.5	1.0	10.0					
t _{PLZ}	OE to A	1.0	3.1	6.5	1.0	7.0	1.0	3.4	6.5	1.0	7.0	ns				
t _{OSHL}	Output to Output															
toslh	Skew (Note 8)		1.0	1.5		1.5		1.0	1.5		1.5	ns				
	Data to Output															

Note 6: Typical values at V_{CCA} = 3.3V, V_{CCB} = 5.0V @ 25°C.

Note 7: Typical values at V_{CCA} = 3.3V, V_{CCB} = 3.3V @ 25^{\circ}C.

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Symbol	Parameter		Тур	Units	Conditions
CIN	Input Capacitance		4.5	pF	V _{CC} = Open
C _{I/O}	Input/Output Capacitance		10	pF	$V_{CCA} = 3.3V$
					$V_{CCB} = 5.0V$
C _{PD}	Power Dissipation	A→B	50	pF	$V_{CCB} = 5.0V$
	Capacitance (Note 9)	B→A	40	pF	$V_{CCA} = 3.3V$

Note 9: C_{PD} is measured at 10 MHz.

Power Up Considerations

To insure the system does not experience unnecessary I_{CC} current draw, bus contention, or oscillations during power up, the following guidelines should be adhered to (refer to Table 1):

- Power up the control side of the device first. This is the $V_{\mbox{\scriptsize CCA}}$ side.
- OE should ramp with or ahead of V_{CCA}. This will help guard against bus contention.
- The Transmit/Receive control pin (T/ \overline{R}) should ramp with $V_{CCA},$ this will ensure that the A Port data pins are con-

figured as inputs. With V_{CCA} receiving power first, the A I/O Port should be configured as inputs to help guard against bus contention and oscillations.

• A side data inputs should be driven to a valid logic level. This will prevent excessive current draw.

The above steps will ensure that no bus contention or oscillations, and therefore no excessive current draw occurs during the power up cycling of these devices. These steps will help prevent possible damage to the translator devices and potential damage to other system components.

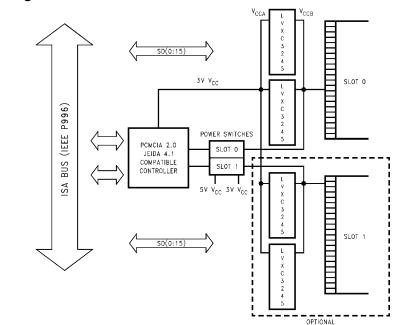
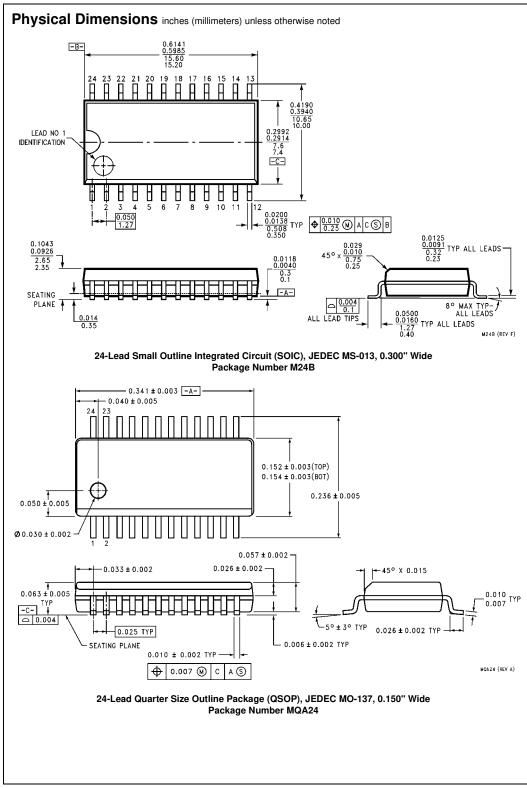
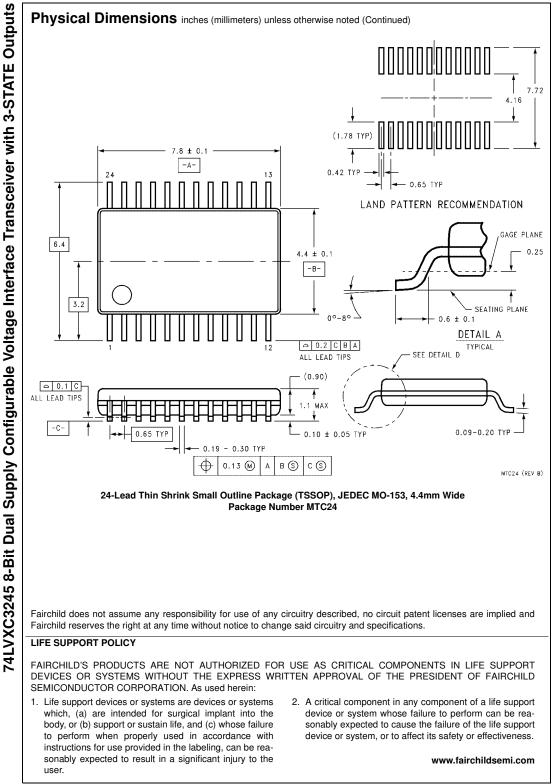

Device Type	V _{CCA}	V _{CCB}	T/R	ŌE	A Side I/O	B Side I/O	Floatable Pin Allowed
74LVXC3245	3V (power up 1st)	3V to 5.5V configurable	ramp with V _{CCA}	ramp with V _{CCA}	logic 0V or V _{CCA}	outputs	yes, V _{CCB} and B I/O's w/ OE HIGH

TABLE 1. Low Voltage Translator Power Up Sequencing Table

Please reference Application Note AN-5001 for more detailed information on using Fairchild's LVX Low Voltage Dual Supply CMOS Translating Transceivers.

Configurable I/O Application for PCMCIA Cards


Block Diagram


The LVXC3245 is a 24-pin dual supply device well suited for PCMCIA configurable I/O applications. Ideal for low power notebook designs, the LVXC3245 consumes less than 1 mW of quiescent power in all modes of operation. The LVXC3245 meets all PCMCIA I/O voltage requirements at 5V and 3.3V operation. By tying V_{CCB} of the LVXC3245 to the card voltage supply, the PCMCIA card

will always experience rail to rail output swings, maximizing the reliability of the interface.

The V_{CCA} pin on the LVXC3245 must always be tied to a 3V power supply. This voltage connection provides internal references needed to account for variations in V_{CCB}. When connected as in the figure above, the LVXC3245 meets all the voltage and current requirements of the ISA bus standard (IEEE P996).

74LVXC3245

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC